

An All-But-One Entropic Uncertainty Relation and Application to Password-based Identification

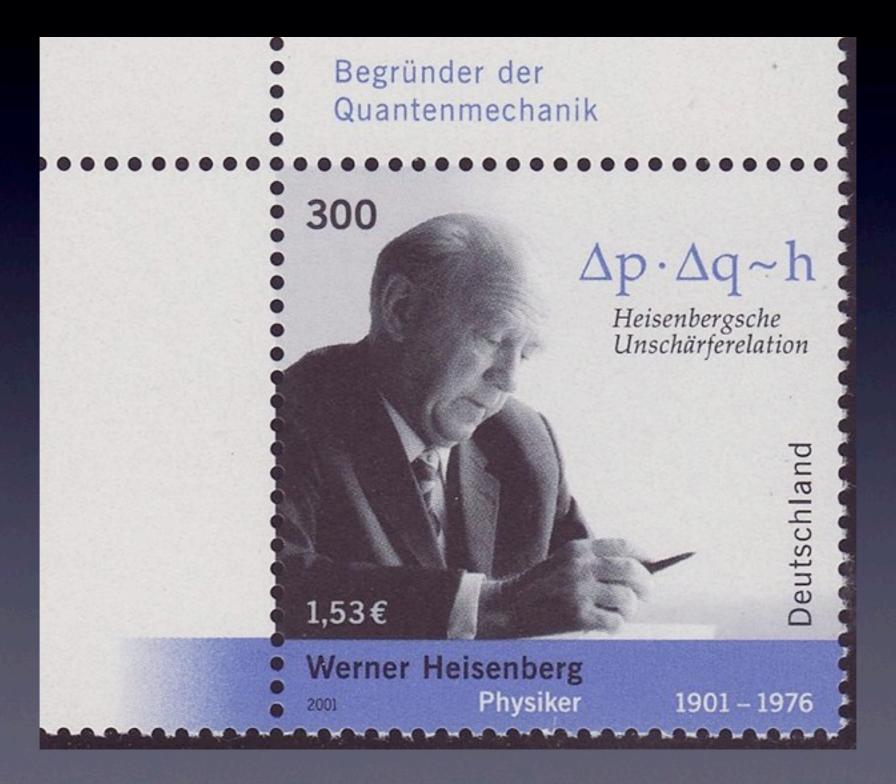
Niek J. Bouman, Serge Fehr, Carlos Gonzáles-Guillén, Christian Schaffner

Thu, Sept 15 / QCRYPT 2011 / ETH Zürich

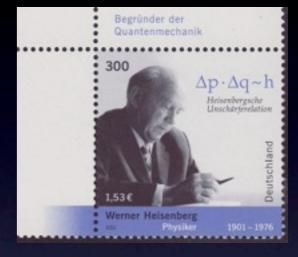
UNIVERSITY OF AMSTERDAM

Instituto de Matemática Interdisciplinar

Uncertainty Relations



Uncertainty Relations



Uncertainty Relations

First Entropic Uncertainty Relation: Isodore Hirschman (1957)

A more well-known entropic UR: Maassen-Uffink (1988)

Let $\{\mathcal{B}_1, \dots, \mathcal{B}_m\}$ be a family of orthonormal bases for an *n*-qubit Hilbert space. We define the maximum overlap of this family as the number

Let $\{\mathcal{B}_1, ..., \mathcal{B}_m\}$ be a family of orthonormal bases for an *n*-qubit Hilbert space. We define the maximum overlap of this family as the number $c := \max\{|\langle \phi | \psi \rangle| : |\phi \rangle \in \mathcal{B}_j, |\psi \rangle \in \mathcal{B}_k, 1 \le j < k \le m\}$

Let $\{\mathcal{B}_1, ..., \mathcal{B}_m\}$ be a family of orthonormal bases for an *n*-qubit Hilbert space. We define the maximum overlap of this family as the number $c := \max\{|\langle \phi | \psi \rangle| : |\phi \rangle \in \mathcal{B}_j, |\psi \rangle \in \mathcal{B}_k, 1 \le j < k \le m\}$

Example

For the family consisting of the computational and Hadamard basis on n qubits,

 $c = 2^{-n/2}$

Let $\{\mathcal{B}_1, ..., \mathcal{B}_m\}$ be a family of orthonormal bases for an *n*-qubit Hilbert space. We define the maximum overlap of this family as the number $c := \max\{|\langle \phi | \psi \rangle| : |\phi \rangle \in \mathcal{B}_j, |\psi \rangle \in \mathcal{B}_k, 1 \le j < k \le m\}$

Example

For the family consisting of the computational and Hadamard basis on n qubits,

$$c = 2^{-n/2}$$

RemarkFor "good" families, $\lim_{n \to \infty} -\frac{1}{n} \log_2 c \in (0, \frac{1}{2}]$

Theorem (Maassen-Uffink) For all *n*-qubit states ρ it holds that when measuring such a state either in basis \mathcal{B}_j or \mathcal{B}_k $H(X | J = j) + H(X | J = k) \ge -2 \log(c)$ $\forall j \ne k \in [m]$ where X is the outcome when measuring in \mathcal{B}_J

 They deepen our understanding of Quantum Mechanics

- They deepen our understanding of Quantum Mechanics
- Entropic Uncertainty Relations that give a bound on the min-entropy are convenient proof-tools in quantum cryptography $H_{\min}(X) := -\log \max P_X(x)$

- They deepen our understanding of Quantum Mechanics
- Entropic Uncertainty Relations that give a bound on the min-entropy are convenient proof-tools in quantum cryptography $H_{\min}(X) := -\log \max P_X(x)$

A new entropic uncertainty relation, with three key properties

A new entropic uncertainty relation, with three key properties

I. Min-entropy as uncertainty measure

A new entropic uncertainty relation, with three key properties

I. Min-entropy as uncertainty measure

2. Guarantees uncertainty in the measurement outcome for "all-but-one" measurements

A new entropic uncertainty relation, with three key properties

- I. Min-entropy as uncertainty measure
- 2. Guarantees uncertainty in the measurement outcome for "all-but-one" measurements
- 3. Compatible with single-qubit measurements, hence usable to prove the security of schemes that can be implemented with today's technology

Talk Plan

Talk Plan

I. State and explain the new uncertainty relation

Talk Plan

- I. State and explain the new uncertainty relation
- 2. Discuss main application: Password-based Identification

Let $\{\mathcal{B}_1, \dots, \mathcal{B}_m\}$ be a family of bases with maximum overlap c.

Let $\{\mathcal{B}_1, \dots, \mathcal{B}_m\}$ be a family of bases with maximum overlap c.

For all *n*-qubit states ρ and for all RVs *J* over [m] (independent of ρ), there exists a RV *J*' over [m] that is independent of *J*, such that:

Let $\{\mathcal{B}_1, \dots, \mathcal{B}_m\}$ be a family of bases with maximum overlap c.

For all *n*-qubit states ρ and for all RVs *J* over [m] (independent of ρ), there exists a RV *J'* over [m] that is independent of *J*, such that:

 $H_{\min}(X|J=j, J'=j') \gtrsim -\log(c) \quad \forall j \neq j' \in [m]$

Let $\{\mathcal{B}_1, \dots, \mathcal{B}_m\}$ be a family of bases with maximum overlap c.

For all *n*-qubit states ρ and for all RVs *J* over [m] (independent of ρ), there exists a RV *J'* over [m] that is independent of *J*, such that:

 $H_{\min}(X|J=j, J'=j') \gtrsim -\log(c) \quad \forall j \neq j' \in [m]$

where X is the outcome when measuring in \mathcal{B}_J .

Our Result Explained

Our Result Explained

Contribution

A new entropic uncertainty relation, with three key properties

- I. Min-entropy as uncertainty measure
- 2. Guarantees uncertainty in the measurement outcome for "all-but-one" measurements
- 3. Compatible with single-qubit measurements, hence usable to prove the security of schemes that can be implemented with today's technology

Our Result Explained

Contribution

A new entropic uncertainty relation, with three key properties

I. Minentop as in Manufacture

- 2. Guarantees uncertainty in the measurement outcome for "all-but-one" measurements
- 3. Compatible with single-qubit measurements, hence usable to prove the security of schemes that can be implemented with today's technology

Theorem (Maassen-Uffink) For all *n*-qubit states ρ it holds that when measuring such a state either in basis \mathcal{B}_j or \mathcal{B}_k $H(X | J = j) + H(X | J = k) \ge -2 \log(c)$ $\forall j \ne k \in [m]$ where X is the outcome when measuring in \mathcal{B}_J

Theorem (Maassen-Uffink) For all *n*-qubit states ρ it holds that when measuring such a state either in basis \mathcal{B}_i or \mathcal{B}_k $H(X | J = j) + H(X | J = k) \ge -2 \log(c)$ $\forall j \neq k \in [m]$ where X is the outcome when measuring in \mathcal{B}_J \Rightarrow There exists at most one $j' \in [m]$ such that $H(X | J = j') < -\log(c)$

[¬]Theorem (Maassen-Uffink) For all *n*-qubit states ρ it holds that when measuring such a state either in basis \mathcal{B}_i or \mathcal{B}_k $H(X | J = j) + H(X | J = k) \ge -2 \log(c)$ $\forall j \neq k \in [m]$ where X is the outcome when measuring in \mathcal{B}_J \Rightarrow There exists at most one $j' \in [m]$ such that $H(X \mid J = j') < -\log(c)$ All-but-One Shannon Entropy Uncert. Relation $H(X \mid J = j) \ge -\log(c) \quad \forall j \neq j'$

Comparison

All-but-One Shannon-Entr. UR (follows from Maassen Uffink)

New All-b.-One Min-Entropy UR

 $\begin{array}{c|c} H(X \mid J=j) \geq -\log(c) & H_{\min}(X \mid J=j, J'=j') \gtrsim -\log(c) \\ \forall j \neq j' & \forall j \neq j' \end{array}$

Comparison

All-but-One Shannon-Entr. UR (follows from Maassen Uffink)

New All-b.-One Min-Entropy UR

Is this RV J' necessary?

Comparison

All-but-One Shannon-Entr. UR (follows from Maassen Uffink)

New All-b.-One Min-Entropy UR

 $\begin{array}{c|c} H(X \mid J=j) \geq -\log(c) & H_{\min}(X \mid J=j, J'=j') \gtrsim -\log(c) \\ \forall j \neq j' & \forall j \neq j' \end{array}$

Is this RV J' necessary?

Recall: For "good" families of bases on an *n*-qubit space, $-\log(c)$ is linear in n

Example with "good" family of bases, for which $H_{\min}(X \mid J=j)=1 \quad \forall j$

Example with "good" family of bases, for which $H_{\min}(X \mid J=j)=1 \quad \forall j$

Let ρ be the *n*-qubit mixture:

$$\rho = \frac{1}{2} |0 \cdots 0\rangle \langle 0 \cdots 0| + \frac{1}{2} |+ \cdots +\rangle \langle + \cdots +$$

Example with "good" family of bases, for which $H_{\min}(X \mid J=j)=1 \quad \forall j$

Let ρ be the *n*-qubit mixture:

$$\rho = \frac{1}{2} |0 \cdots 0\rangle \langle 0 \cdots 0| + \frac{1}{2} |+ \cdots +\rangle \langle + \cdots +$$

equivalently: $ho = |0 \cdots 0\rangle \langle 0 \cdots 0|$ with prob. ho_2 $ho = |+ \cdots +\rangle \langle + \cdots +|$ with prob. ho_2

Example with "good" family of bases, for which $H_{\min}(X \mid J=j)=1 \quad \forall j$

Let ρ be the *n*-qubit mixture:

$$\rho = \frac{1}{2} |0 \cdots 0\rangle \langle 0 \cdots 0| + \frac{1}{2} |+ \cdots +\rangle \langle + \cdots +$$

equivalently: $\rho = |0 \cdots 0\rangle \langle 0 \cdots 0|$ with prob. $\frac{1}{2}$ $\rho = |+ \cdots +\rangle \langle + \cdots +|$ with prob. $\frac{1}{2}$

The family of (meas.) bases is $\{\text{Comp, Hadamard}\},\$ on n qubits for which $c = 2^{-n/2}$

User

 User proves knowledge of password w to Server, such that a dishonest party learns (almost) no information about w

User

Server

 User proves knowledge of password w to Server, such that a dishonest party learns (almost) no information about w

> User Server $W \cup \rightarrow \qquad \leftarrow Ws$ $\mathcal{F} \rightarrow EQUALITY(W \cup Ws)$ "accept" or "reject"

Circumventing the Impossibility Result

Circumventing the Impossibility Result
 bounded quantum storage + unbounded quantum computation (= "Bounded Quantum Storage Model")

Circumventing the Impossibility Result

bounded quantum storage + unbounded quantum computation (= "Bounded Quantum Storage Model")
unbounded quantum storage + bounded quantum computation ??

New: "Single-Qubit Operations Model" (SQOM)

- Malicious party has unbounded quantum storage,
- but is restricted to single-qubit operations and measurements

Existing QID Scheme QID Scheme of Damgård et al. [DFSS07]

- Unconditionally secure against malicious user
- Secure against malicious server in the BQSM
- Security breaks down if malicious server can store all qubits (no quant. computation needed)

Existing QID Scheme QID Scheme of Damgård et al. [DFSS07]

- Unconditionally secure against malicious user
- Secure against malicious server in the BQSM
- Security breaks down if malicious server can store all qubits (no quant. computation needed)

Our QID Scheme

- Unconditionally secure against malicious user
- Secure against malicious server in BQSM as well as in SQOM
- Some security left if malicious server can store all qubits (non-trivial quant. comp. needed to break it)

Our QID Scheme

- Unconditionally secure against malicious user
- Secure against malicious server in BQSM as well as in SQOM
- Some security left if malicious server can store all qubits (non-trivial quant. comp. needed to break it)

Remark Security proof of new QID scheme in BQSM is based on our uncertainty relation

Thank You