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Maassen-Uffink (1988)
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Example
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Remark
For “good” families, 

n → ∞
lim− 1

n
log2 c ∈ (0, 1
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Theorem (Maassen-Uffink)
For all n-qubit states rρ it holds that when measuring 

such a state either in basis Bj or Bk

H(X |J =j) + H(X |J =k) ³≥ -−2 log(c )

"∀ j ¹≠ k Î∈ [m]
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1. State and explain the new uncertainty 
relation

2. Discuss main application:
Password-based Identification
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where X is the outcome when measuring in BJ.

Hmin(X|J = j, J
� = j

�) � − log(c) ∀j �= j
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H(X |J =j) + H(X |J =k) ³≥ -−2 log(c )
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⇒ There exists at most one j’ Î∈ [m] such that

H(X |J = j’ ) < -− log(c )

All-but-One Shannon Entropy Uncert. Relation
H(X | J = j ) ³≥ -−log(c )      "∀ j ¹≠ j’
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Comparison

All-but-One Shannon-Entr. UR
(follows from Maassen Uffink)

New All-b.-One Min-Entropy UR

H(X | J = j ) ³≥ -−log(c )      
"∀ j ¹≠ j’

Hmin(X |J=j, J’=j’)    -−log(c )
"∀ j ¹≠ j’

≈>

Recall: For “good” families of bases on an n-qubit space, 
-−log(c ) is linear in n

Is this RV J’ necessary?
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Necessity of J’ 

ρ = 1
2 |0 · · · 0��0 · · · 0| + 1

2 |+ · · · +��+ · · · +|

Example with “good” family of bases,
for which Hmin(X | J=j )=1   "∀j 

ρ = |0 · · · 0��0 · · · 0| with prob. ½

ρ = |+ · · ·+��+ · · ·+ | with prob. ½
equivalently:

Let rρ be the n-qubit mixture:

The family of (meas.) bases is {Comp, Hadamard},
on n qubits for which

c = 2−n/2
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• User proves knowledge of password w to Server, 
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(almost) no information about w   

wU wS

F
EQUALITY(wU ,wS)
“accept” or “reject”

User Server
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computation ??



New: “Single-Qubit Operations Model” (SQOM)

• Malicious party has unbounded quantum 
storage,

• but is restricted to single-qubit operations and 
measurements
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Our QID Scheme

• Unconditionally secure against malicious user

• Secure against malicious server in BQSM as well as 
in SQOM 

• Some security left if malicious server can store all 
qubits (non-trivial quant. comp. needed to break it)

Remark
Security proof of new QID scheme in BQSM is 
based on our uncertainty relation
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