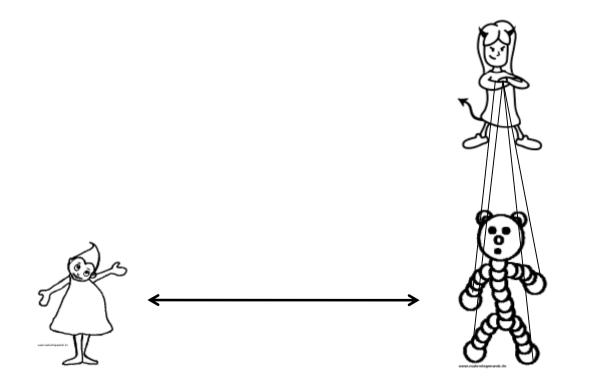

#### Impossibility of Growing Quantum Bit Commitment

Severin Winkler, Marco Tomamichel, Stefan Hengl, Renato Renner ETH Zurich

QCRYPT, September 13, 2011


### Motivation: QKD

• QKD over insecure channel is impossible:



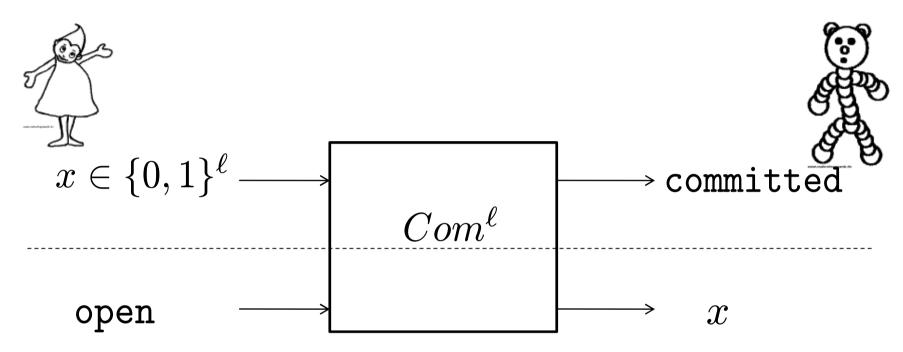
### Motivation: QKD

QKD over insecure channel is impossible:
 – Eve can play the role of Bob



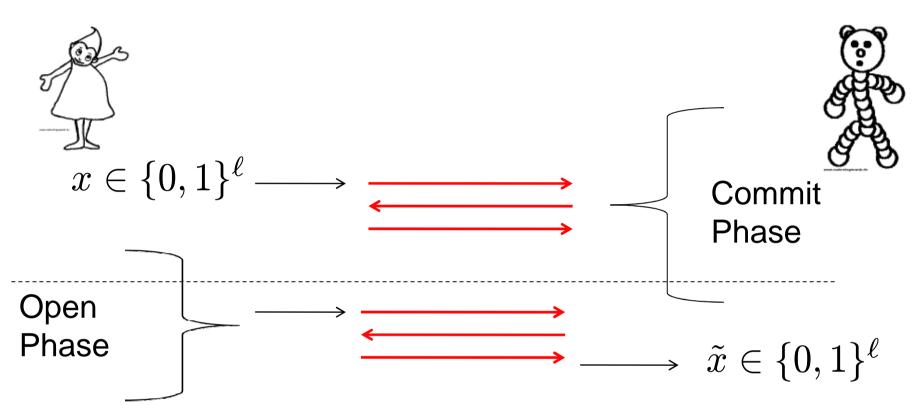


## Motivation: QKD


- QKD over insecure channel is impossible:
   Eve can play the role of Bob
- Initial key can be used to authenticate channel
- QKD using an authenticated channel [BB84,Ekert'91]

 $\rightarrow$  Quantum Key Growing is possible

## Motivation: 2-Party Computation


- Secure Coin Toss impossible [Lo,Chau'98, Kitaev'03]
- Coin Toss can be extended (Standalone Model) [Hofheinz,Müller-Quade,Unruh'06]
- Secure Commitments impossible [Mayers'97; Lo,Chau'97]
- Analogous Question for Commitments:
  - Commitment to large string from a smaller number of Bit Commitments?

### Ideal String Commitment



- Statistically secure Oblivious Transfer / Multi-Party Computation [BBCS'92,DFLSS'09,Unruh'10]
- Zero-Knowledge Proofs and Secure CoinTossing

#### **Commitment Protocol**

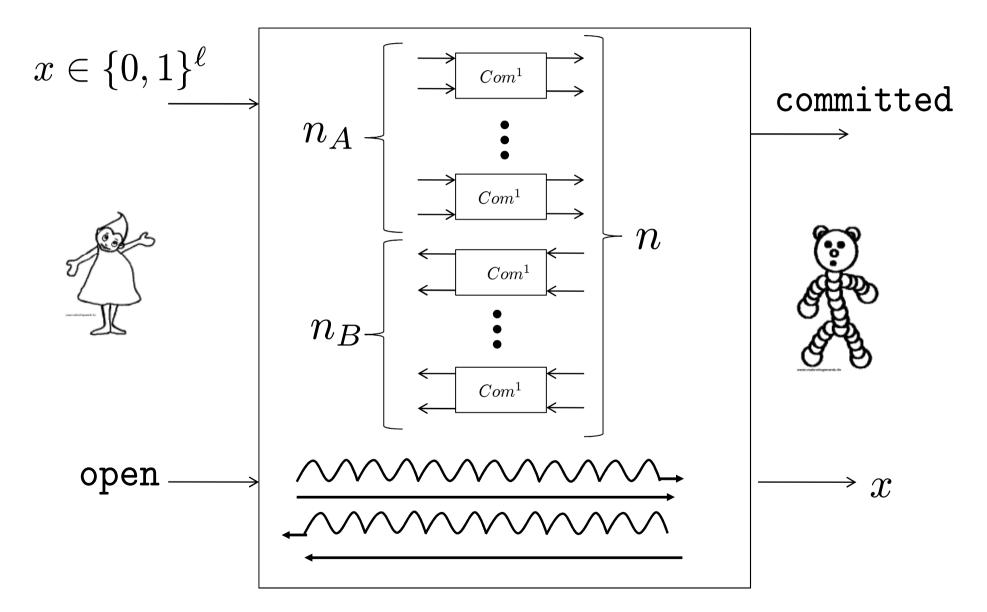


Security for Alice (Hiding):

Bob has no information about committed value before Open

Security for Bob (Binding):

Alice cannot change committed value


# Model

- (Noiseless) Quantum Channel
- (Noiseless) Classical Channel

- Measures input and sends result to receiver

- Arbitrary quantum operations on whole system (conditioned on classical data)
- Players have unlimited computing power – QBSM/NSM [DFSS05,DFRSS07], [WST08,STW08,KWW09]
- No Relativistic Protocols [Kent'99,Kent'05, Kent'11]
- Ideal Bit Commitments as a Resource

### **Growing Commitments**



## Main Result

- Any protocol implementing a string commitment of lenght ℓ:
  - quantum and classical communication
  - -using  $n = n_A + n_B$  Bit Commitments
  - unconditionally hiding and binding with a small (constant) error must satisfy  $\ell \leq n$ .
- Weaker result follows from lower bounds for oblivious transfer reductions [WW10]

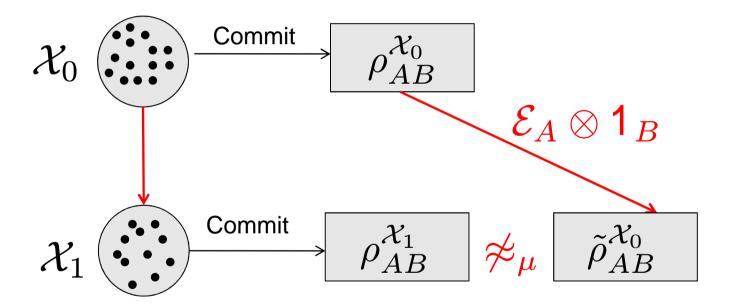
#### Part 2: Proof Ideas

### **Purified Protocol**

- Purify operations of players:
  - Introduce larger space (ancillas)
  - Unitary operations (Stinespring)
- Purified protocol is equivalent
- Joint state  $\rho_{AB}$  at the end of commit phase is pure conditioned on (symmetric) classical information

## Commit to Superposition

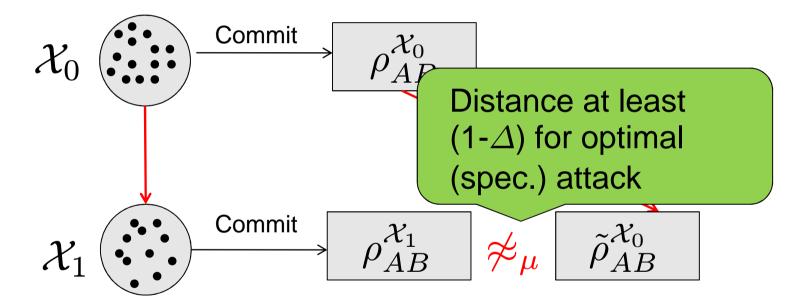
- Alice can purify random choice of input
- Commit to uniform superposition of strings from a set  $\mathcal{X}_0\subseteq\{0,1\}^\ell$  :
  - Prepare the state  $rac{1}{\sqrt{|\mathcal{X}_0|}}\sum_{x\in\mathcal{X}_0}|x
    angle_X\otimes|x'
    angle_{X'}$
  - Input register X to the protocol
  - Keep register X'
- Measure X' to obtain x after commit
- Open x


## Security: Hiding

- We use two security properties that follow from any sensible security definition
- Relaxed (e.g. no arbitrary malicious strategies)→stronger impossibility
- (Weakly)  $\epsilon$ -Hiding:
  - For uniform X, the committed strings X are close to uniform w.r.t. B

$$\rho_{XB} \approx_{\epsilon} \frac{1}{|X|} \mathbf{1}_X \otimes \sigma_B$$

### Security: Binding


• (Weakly) *∆*-Binding:



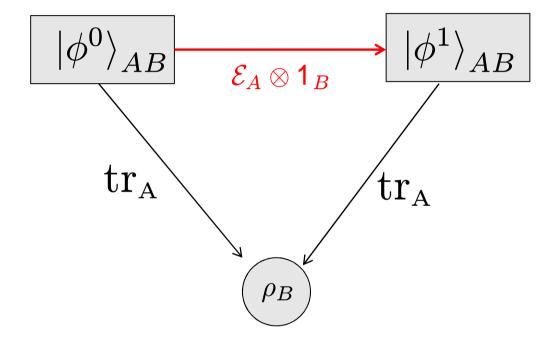
•  $(1-\Delta) = \text{distance } \mu$  minimized over disjoint sets  $\mathcal{X}_0, \mathcal{X}_1$  and maps  $\mathcal{E}_A$  on Alice's system

### Security: Binding


• (Weakly) *∆*-Binding:

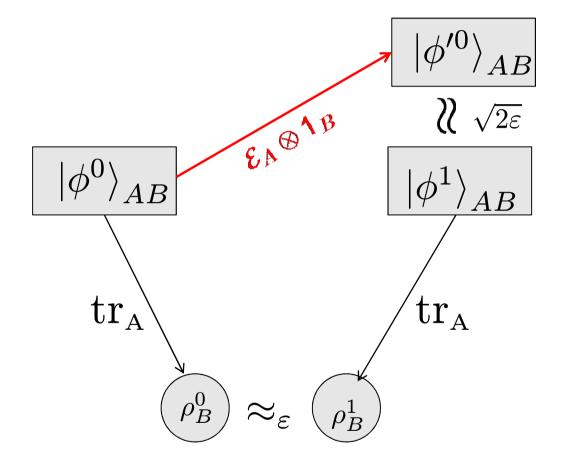


•  $(1-\Delta) = \text{distance } \mu$  minimized over disjoint sets  $\mathcal{X}_0, \mathcal{X}_1$  and maps  $\mathcal{E}_A$  on Alice's system


## (Relaxed) Security: Binding

• (Weakly) *△*-Binding:



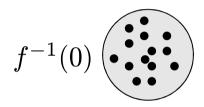

•  $(1-\Delta)$  = distance  $\mu$  minimized over disjoint sets  $\mathcal{X}_0, \mathcal{X}_1$  and maps  $\mathcal{E}_A$  on Alice's system

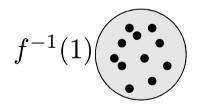
#### Alice's Attack (perfectly hiding)



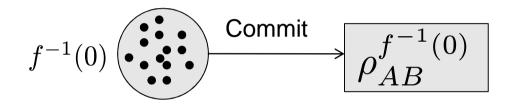
Application of Uhlmann's Theorem

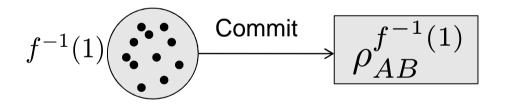
#### Attack: non-perfectly hiding



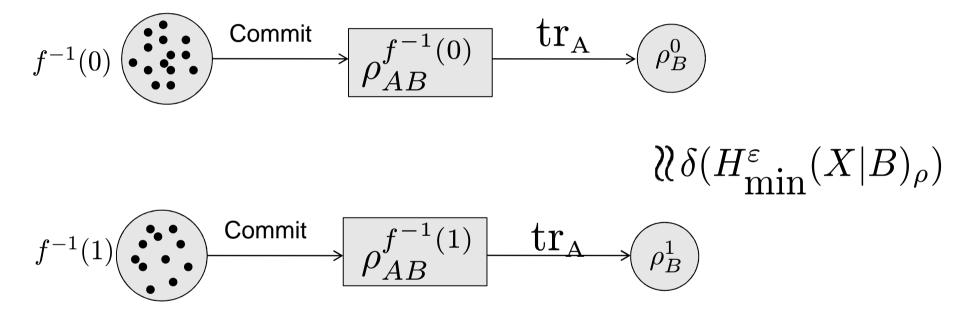


 same attack if states are pure conditioned on symmetric classical data

## Min-Entropy and Privacy Amplification

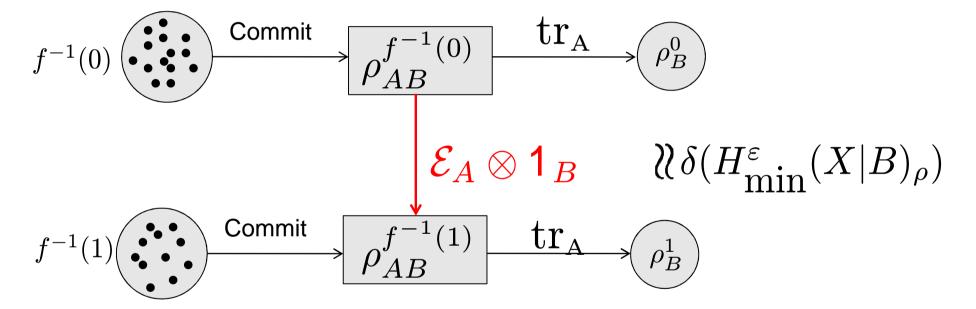

- Relate  $H^{\varepsilon}_{\min}(X|B)_{\rho}$  to success probability of Alice's attack
- $H_{\min}^{\varepsilon}(X|B)_{\rho}$  = min-entropy of X conditioned on B
- We extract one secret bit f(X) using a twouniversal function f
- Secrecy of f(X) increases with  $H^{\varepsilon}_{\min}(X|B)_{\rho}$


• Secrecy of f(X) increases with  $H_{\min}^{\varepsilon}(X|B)_{\rho}$ 






- Secrecy of f(X) increases with  $H_{\min}^{\varepsilon}(X|B)_{\rho}$ 






- Secrecy of f(X) increases with  $H^{\varepsilon}_{\min}(X|B)_{\rho}$ 



- Secrecy of f(X) increases with  $H^{\varepsilon}_{\min}(X|B)_{\rho}$ 



- Success probability. of Alice's attack increases with  $H^{\varepsilon}_{\min}(X|B)_{\rho}$ 

### **Proof Sketch with Resources**

- Hiding implies  $H^{\epsilon}_{\min}(X|B)_{\rho} \ge \ell$
- Modified Protocol without Resource:
  - Alice sends committed bits to Bob ( $C_A$ )
  - Bob purifies measure. of committed bits ( $C_B$ )
  - Bob more powerful in the modified protocol
  - Pure state conditioned on classical data
- Smooth Min-Entropy Calculus implies:

 $H_{\min}^{\epsilon}(X|BC_AC_B)_{\rho} \ge \ell - n$ n = #resource bit commitments

### Main Result

- n Bit Commitments as Resource
- Implemented commitment has length  $\ell$
- $\epsilon\text{-hiding}$  and  $\varDelta\text{-binding}$  implies

$$\ell \le n - 2\log\left(\frac{(1-\Delta)^2}{4} - \sqrt{2\epsilon}\right) - 1$$

For example  $\varepsilon = \Delta = 0.01$  implies  $\ell \le n+5$ 

### Conclusions

- Impossible to extend commitments with quantum protocols:
  - no commitment to larger string or
  - no larger number of bit commitments
     from smaller number of bit commitments.
- Similar result holds for quantum commitment resource

# Thank you

Full version: http://arxiv.org/abs/0811.3589

### Problem???

- Can we extend a given cryptographic primitive?
- Interesting from the theoretical point of view
- Relevant in practice:
  - Resources might be costly
  - Lower amortized costs per instance

### **Positive Results**

- Unconditionally Secure Commitments
  - Bounded Storage Model [DFSS05,DFRSS07]
  - Noisy Storage [wst08,stw08,kww09]
  - Relativistic Protocols [Kent'99,Kent'05, Kent'11]
  - Trusted Resources
    - Noisy Correlations [IMNW04,IMNW06]
    - Noisy Channels [Crépeau'97, Winter et al. 03]
  - String Commitments with weak security [BCHLW'06]

## Impossibility Results

- Impossibility Results for Quantum Protocols:
  - No Bit Commitment [Mayers'97; Lo, Chau'97]
  - ??No Secure Coin Toss [Lo,Chau'98,Kitaev'03]
  - ??No Oblivious Transfer / One-Sided SFE [Lo'97]
  - String commitments w. relaxed security [Buhrman, Christandl, Hayden, Lo, Wehner'06]
  - Impossible to extend Oblivious Transfer [ww10]
  - Lower Bound on the number of commitments to implement OT [ww10]