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Apart from their foundational significance, entropic uncertainty relations play a central role in
proving the security of quantum cryptographic protocols. Of particular interest are thereby relations
in terms of the smooth min-entropy for BB84 and six-state encodings. Previously, strong uncertainty
relations were obtained which are valid in the limit of large block lengths. Here, we prove a new
uncertainty relation in terms of the smooth min-entropy that is only marginally less strong, but has
the crucial property that it can be applied to rather small block lengths. This paves the way for
a practical implementation of many cryptographic protocols. As part of our proof we show tight
uncertainty relations for a family of Rényi entropies that may be of independent interest.

Entropic uncertainty relations form a modern way to
characterize the uncertainty inherent in several quantum
measurements. As opposed to more traditional methods
of capturing the notion of uncertainty, they have the ad-
vantage that they are able to quantify uncertainty solely
in terms of the measurements we consider, and are inde-
pendent of the state to be measured. To see this clearly,
let us explain the notion of entropic uncertainty in more
detail (also, see [1] for a survey). Suppose we are given a
state ρ on which we can make one of L possible measure-
ments with outcomes labelled x ∈ X . Let px|ρ,θ denote
the probability of observing outcome x when making the
measurement labelled θ on the state ρ. For each mea-
surement, we can consider some form of entropy of the
outcome distribution such as for example the Shannon
entropy H(X|Θ = θ) = −

∑
x px|ρ,θ log2 px|ρ,θ. An en-

tropic uncertainty relation in terms of the Shannon en-
tropy is then determined by the average (pθ = 1/L) over
the individual entropies. More precisely, such a relation
states that for all states ρ

1

L

∑
θ

H(X|Θ = θ) = H(X|Θ) ≥ c , (1)

where c is a constant that depends solely on the mea-
surements. For example, if ρ is a single qubit state, and
we consider L = 2 measurements in the Pauli σX and
σZ eigenbases, we have c = 1

2 [2]. To see why (1) for
c > 0 is indeed connected with uncertainty, note that if
the outcome is certain with respect to some measurement
θ on the state ρ (H(X|Θ = θ) = 0), then the outcome
of at least one other measurement θ′ 6= θ is uncertain
(H(X|Θ = θ′) > 0). Similarly, the larger the value of c,
the more uncertain these outcomes are. The value of c
thus give a natural measure of the incompatibility of dif-
ferent sets of measurements. Strong uncertainty relations
have the property that c is large.
From a cryptographic perspective, uncertainty rela-
tions in terms of the min-entropy Hmin(X|Θ = θ) =
− log maxx px|ρ,θ are of particular interest, since the min-

entropy determines how many random bits (key) can be
extracted from X [3]. In a cryptographic setting, it is
thereby often interesting to consider a slight extension
of the notion of uncertainty relations above. Namely,
instead of measuring one state ρ, we imagine that an
adversary prepares with some probability pk a state ρk
(labelled by some classical label K = k) which we sub-
sequently measure. Since entropic uncertainty relations
hold for any state, they do in particular hold for any
state ρk that the adversary may have prepared. Yet, the
distribution {px|kθ} over measurement outcomes may of
course depend on k. Uncertainty relations with respect
to such classical side information K thus take the form

Hmin(X|ΘK) ≥ c′ , (2)

for some constant c′ depending on the measurements we
make. Averaging over bases Θ and classical information
K, the conditional min-entropy is given by (see appendix)

Hmin(X|ΘK) = − log
∑
θ

pθ
∑
k

pk|θ max
x

px|kθ . (3)

For example, imagine that ρ is an n-qubit state and we
perform one of the 2n possible measurements given by
measuring each qubit independently in one of the two
BB84 bases [4], i.e., in the eigenbasis of Pauli σx or σz. It
is known that in this case c′ = −n · log(1/2 + 1/(2

√
2)) ≈

n · 0.22 for any K. This is also optimal as there exists a
state that attains this lower bound.
Measurements in BB84 bases are indeed common in
many quantum cryptographic protocols. In particular,
they are used in two-party cryptographic protocols in
the bounded [5, 6] and noisy-storage model [7–9]. These
models allow for the secure implementation of any two-
party cryptographic primitive under the assumption that
the adversary’s quantum memory device is bounded and
imperfect. This includes interesting primitives such as
oblivious transfer, bit commitment, and even secure iden-
tification of e.g. a user to an ATM machine. The se-
curity of all protocols in this model crucially rests on
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the existence of uncertainty relations in terms of min-
entropy [5–11]. Yet, the value of c′ ≈ n · 0.22 for BB84
bases is usually too low to be cryptographically useful.
In particular, a low value for c′ means that the adver-
sary’s memory must be very limited and/or noisy for
security to be possible [5, 6, 9] at all. Furthermore, a
low value of c′ means that any experiment implementing
such protocols can tolerate only a small amount of bit flip
errors and losses [8, 12, 13]. For instance, if perr is the
bit flip error on the channel connecting Alice and Bob,
then security for the cryptographic primitive known as
oblivious transfer is possible if c′ − h(perr) > 0 [12, 14],
where h(p) = −p log2 p− (1− p) log2(1− p) is the binary
Shannon entropy.
Motivated by this need to obtain a strong uncertainty
relation for BB84 bases, that is, a large c′, the au-
thors of [6] considered the so-called smooth min-entropy
Hε

min(X|ΘK). Intuitively, a lower bound c′ on this quan-
tity tells us that we do indeed have min-entropy at least
c′, except for some small error parameter ε > 0. For-
mally, this quantity is defined as (see appendix)

Hε
min(X|ΘK)ρ = sup

ρ′
Hmin(X|ΘK)ρ′ , (4)

where ρ′ is ε-close to ρ in terms of the purified dis-
tance [15].
It turns out that at the expense of such a small error
ε, a much stronger uncertainty relation can indeed be
obtained. In particular, it has been shown [6] that for
measurements in the BB84 bases and any δ ∈ (0, 12 ],

Hε
min(X|ΘK) ≥ n ·

(
1

2
− δ
)
, (5)

where

ε = exp

[
− δ2n

512(2 + log 2
δ )2

]
. (6)

Using this relation in a cryptographic protocol only yields
an additional error ε in the overall security error, and it
is widely employed in the protocols of [6, 9, 10, 12–14].
From a theoretical (asymptotic) viewpoint, this uncer-
tainty relation is certainly sufficient. Yet, when it comes
to putting any of such protocols into a practical experi-
ment it has a small caveat: whereas ε decreases exponen-
tially in the number of qubits n, for a large amount of
uncertainty, i.e., c′ = 1/2 − δ ≈ 1/2, the convergence is
extremely slow. For example, for δ = 0.0106 [13] corre-
sponding to c′ = 0.4788, we need n ≥ 2×108 to even have
ε = 0.1! In an experiment using weak coherent pulses,
with frequency of 1GHz and Poisson parameter µ = 1
it takes approximately 2.5 seconds to generate such an
n [13] if there are absolutely no losses of any kind. How-
ever, compared to the generation time, a more significant
inconvenience is that the classical post-processing of such
large block lengths is time-consuming.

RESULTS

To implement aforementioned protocols, it would thus be
desirable to have a relation that is useful for significantly
smaller values of n. Here, we prove such a relation that
makes a statement for any desirable fixed error ε > 0. In
particular, we show that for any n qubit quantum state
ρ and measurements in BB84 bases

Hε
min(X|ΘK) ≥ n · cBB84 , (7)

where

cBB84 := max
s∈(0,1]

1

s
[1 + s− log(1 + 2s)]− 1

sn
log

2

ε2
. (8)

At the first glance, it may be hard to see that cBB84

is indeed large. However, applying it to the example
from [13] (see above) by plugging in s = 0.1 demon-
strates that for the same ε = 0.1, cBB84 ≥ 0.4837 with
n = 1 × 104. Comparing this with calculations in the
previous section, the required block length n is approx-
imately 10−4 times smaller. Figure provides a compar-
ison of these two bounds. We see that even for large ε,
the required bound on the block length n given by (6) is
large.
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FIG. 1: This plot shows the minimal required block length
n on a logarithmic scale of base 10, in order to achieve an
error parameter ε. The dashed curves are plotted for the
previous known bound (6), while the solid lines are obtained
from our new analysis (8). The different colors represent the
fixed values of the lower bound c′, with values 0.45, 0.46,
0.47, 0.48, and 0.49 respectively. As c′ increases, the plotted
bounds get relatively higher.

Our relation can readily be applied to any BB84 based
two-party protocols in the bounded (or noisy)-storage
model, and enables experiments for significantly smaller
values of n. For example, it enables the experimental im-
plementation of [16] with n = 2.5×105 instead of n > 109

for the same error parameter ε.
Furthermore our relation can be extended to the case
of six-state protocols, i.e., measurements in Pauli σx, σz



3

and σy eigenbases as suggested in [10, 11, 14]. For this
case we obtain

Hε
min(X|ΘK) ≥ n · c6 , (9)

where

c6 := max
s∈(0,1]

− 1

s
log

[
1

3

(
1 + 21−s

)]
− 1

sn
log

2

ε2
. (10)

This yields a similar improvement over the relation anal-
ogous to (5) proven in [6].
A crucial step in our proof is to show tight uncertainty
relations for conditional Rényi entropies of order α, de-
noted by Hα(A|B). These may be of independent inter-
est. Previously, such relations were only known for single
qudit measurements for α → 1, α = 2, and α → ∞ (see
e.g. [1, 17, 18]). More precisely, we show that for mea-
surements on n-qubit states ρ in BB84 bases, the min-
imum values of the conditional Rényi entropies for any
α ∈ (1, 2] are

min
ρ

Hα(X|Θ)ρ|ρ = n · α− log(1 + 2α−1)

α− 1
, (11)

where

Hα(A|B)ρ|ρ :=
1

1− α
tr
[
ραAB(IA ⊗ ρB)1−α

]
. (12)

Similarly, for measurements in the six-state bases

min
ρ

Hα(X|Θ)ρ|ρ = n ·
log 3− log

(
1 + 22−α

)
α− 1

. (13)

A detailed technical proof of this result can be found in
the full paper on arXiv [19].

CONCLUSIONS

We have proven entropic uncertainty relations that pave
the way for a practical implementation of BB84 and six-
state protocols [5–10, 12–14] at small block length. In-
deed, our relation has already been employed in [16] for
an experimental implementation of bit commitment in
the bounded/noisy-storage model.
It is an interesting open question whether similarly strong
relations can also be obtained with respect to quantum
side information [11, 20, 21]. This would allow security
statements for such protocols in terms of the quantum
capacity [11] of the storage device, rather than the clas-
sical capacity [9] or the entanglement cost [22]. For the
six-state case this has been done (implicitly) in [11] for
the special case of a Rényi type entropy of order α = 2,
yielding however again a slightly weaker uncertainty re-
lation as might be possible for other values of α ∈ (1, 2].

As the amount of uncertainty is the the key element in
being able to tolerate experimental errors and losses in
said protocols, it would be nice to extend our result to
this setting.
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