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We show that the maximum transmission distance of continuous-variable quantum key distribu-
tion in presence of a Gaussian noisy lossy channel can be arbitrarily increased using a heralded
noiseless linear amplifier. We explicitly consider a protocol using amplitude and phase modulated
coherent states with reverse reconciliation. Assuming that the secret key rate drops to zero for a line
transmittance Tlim, we find that a noiseless amplifier with amplitude gain g can improve this value
to Tlim/g2, corresponding to an increase in distance proportional to log g. This work is presented in
detail in [1].

Cryptography is certainly one of the most advanced
applications of quantum technologies. Within this field,
the most studied primitive is quantum key distribution
(QKD), which is the art of distributing a secret key to two
distant parties, Alice and Bob, in an untrusted environ-
ment controlled by an adversary, Eve [2]. The security of
QKD lies on the idea that an adversary trying to acquire
some information about the secret key will necessarily
introduce some noise in the quantum communication be-
tween Alice and Bob. A consequence of this idea is that if
the quantum channel is too lossy or noisy, then it cannot
be used to distill a secret key. This limits the maximum
transmission distance between the legitimate parties. De-
veloping QKD protocols resistant to losses and noise is
therefore of great practical importance.

Among QKD protocols, those encoding information in
the amplitude and phase of coherent states [3, 4] have
the advantage of only requiring o↵-the-shelf telecom com-
ponents, as well as being compatible with wavelength-
division multiplexing, making an interesting solution for
robust implementations [5]. On the theoretical side, these
continuous-variable (CV) protocols have been proven se-
cure against arbitrary attacks provided that they are se-
cure against collective attacks [6]. This latter condition is
in particular met for all CV protocols without postselec-
tion for which Gaussian attacks are known to be optimal
within collective attacks [7–10].

Protocols with postselection on the other hand [11, 12],
where Alice and Bob only use part of their data to ex-
tract a secret key, can increase the robustness of QKD
to losses and noise but at the price of more involved
security proofs. In particular, their security is only es-
tablished against Gaussian attacks [13, 14], or when an
active symmetrization of the classical data is applied [15].

We consider the use of a heralded noiseless linear am-
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plifier (NLA) [16–22] on the detection stage as a way
to increase the robustness of CV QKD protocols against
losses and noise. First, it should be noted that while am-
plifiers can e↵ectively recover classical signals, they only
o↵er limited advantages when working on quantum sig-
nals, as amplification is bound to preserve the original
signal to noise ratio (SNR) [18, 23, 24]. This implies that
ordinary linear amplifiers, as those realized by optical
parametric processes [25], can only find limited applica-
tions in the context of QKD [26].

On the other hand, a probabilistic NLA can in principle
amplify the amplitude of a coherent state while retaining
the initial level of noise [16]. Thus, when only consid-
ering its successful runs, the NLA can compensate the
e↵ect of losses and could therefore be useful for quan-
tum communication [27]. The availability of such a de-
vice has stimulated intense experimental activity over the
past years, demonstrating the implementation of approx-
imated versions [17–22], which have provided solid proof-
of-principle. The question arises if these more sophisti-
cated devices can deliver a compensation of losses with a
success rate such that it may represent a useful tool for
quantum cryptography. Here we address this problem,
by investigating the advantages and limitations of the
most general NLA device, without making assumptions
on the particular realization.

We consider explicitly the case for the most com-
mon protocol for continuous-variable QKD, designed by
Grosshans and Grangier (GG02) [3], in its version with
reverse reconciliation [4]. In a prepare-and-measure (PM)
scheme, Alice encodes information in the quadratures of
coherent states which are then sent to Bob through the
untrusted quantum channel of transmittance T , and in-
put equivalent excess noise ✏. Alice chooses her prepa-
ration |↵=xA+ipAi from a Gaussian distribution for the
two quadratures having zero mean and variance VA. Bob
randomly decides whether to measure the x̂ or the p̂

quadrature, using homodyne detection. Alice and Bob fi-
nally extract a secret key from the correlated data by per-
forming classical data processing and authenticated clas-
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sical communication. This protocol o↵ers a simple exper-
imental implementation [4, 28–30] and is secure against
finite-size collective attacks [31] as well as arbitrary at-
tacks in the asymptotic limit of arbitrary long keys [6].

This protocol can be reformulated in an entanglement-
based version (EB), in terms of entanglement distri-
bution between Alice and Bob [32]: the two par-
ties initially share a two-mode squeezed vacuum state
|�i=

p
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n=0 �

n|ni|ni, with �<1. Alice performs
an heterodyne measurement on her mode, which projects
the other mode on a coherent state. The outcome of Al-
ice’s measurement is random, but with a probability dis-
tribution depending on �. Although the EB version does
not correspond to the actual implementation, it is equiv-
alent to the PM version from a security point of view,
and it provides a more powerful description for establish-
ing security proofs against collective attacks through the
covariance matrix of the state shared by Alice and Bob
before their respective measurements.

Let us now consider the use of a NLA in the GG02
protocol. In this modified version of the protocol, Alice
and Bob implement GG02 as usual but Bob adds a NLA
to his detection stage, before his homodyne detection,
which is assumed to be perfect. Then, only the events
corresponding to a successful amplification will be used
to extract a secret key. This scheme is therefore very
similar to protocols with postselection. As usual, the se-
curity analysis is performed in the EB version. Here, we
also restrict ourselves to the case of a Gaussian quantum
channel, that is Eve is limited to perform Gaussian at-
tacks. Since the secure key rate of the protocol depends
only on the covariance matrix of Alice and Bob, it is suf-
ficient to compute it in presence of the NLA.

Our calculation of the secret key rate with the ampli-
fier is based on an e↵ective system for which the security
proofs are well established. Since the output of the NLA
remains in the Gaussian regime, we can look for equiv-
alent parameters of an EPR state sent through a Gaus-
sian noisy channel. We show that the covariance matrix
of the amplified state is equal to the covariance matrix
of an equivalent system with an EPR parameter ⇣, sent
through a channel of transmittance ⌘ and excess noise
✏

g, without using the NLA (Fig. 1). The secret key rate
with the NLA is then obtained by multiplying the se-
cret key rate for successful amplifications by the success
probability of the amplification. An upper bound for the
success probability is derived, however the results do not
depend on its precise value.

In presence of excess noise, the secret key rate against
Gaussian collective attacks always becomes negative for
a certain distance of transmission. We find a regime in
which the NLA leads to an improvement of the max-
imum transmission distance attainable on a noisy and
lossy Gaussian channel, by increasing the tolerable losses
by an equivalent of 20 log10 g dB (Fig. 2 and 3). We also
show that for given losses, the protocol is more robust
against excess noise (Fig. 3).
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Figure 1. Equivalent channel and squeezing: a state |�i sent
through a Gaussian channel of transmittance T and excess
noise ✏, followed by a successful amplification, has the same
Alice-Bob covariance matrix than a state |⇣i sent through
a Gaussian channel of transmittance ⌘ and excess noise ✏g,
without the NLA.
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Figure 2. Maximized secret key rate as a function of the losses
in dB. The secret key rate with the NLA is very optimistic
due to the chosen success probability, and hence its curve gives
only information on its positivity. The other parameters are
excess noise ✏=0.05, and reconciliation e�ciency �=0.95 [33].
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Figure 3. Maximal excess noise for which the secret key rate
is positive, as a function of the losses in dB. The curves do
not depend on the probability of success chosen for the NLA.
The reconciliation e�ciency is �=0.95 [33].
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We perform series expansion of the key rate in first
order in T , which gives us analytical formulae showing
our main result. We also perform numerical studies of the
full expressions, which are in excellent agreement with
the series expansion.

Because of the non-deterministic nature of the NLA,
the security proofs considered here are similar to those
concerning protocols with postselection, that is, they
hold against Gaussian attacks, or collective attacks pro-

vided an additional symmetrization of the classical data
is performed.
Our approach could also find applications in other

quantum communication protocols involving an EPR
state sent through a quantum channel, followed by a
noiseless amplifier. In particular, it could be applied to
other CV QKD protocols, for instance protocols using
squeezed states, or protocols using an heterodyne detec-
tion
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M. Dušek, N. Lütkenhaus, and M. Peev, Rev. Mod. Phys.
81, 1301 (2009).

[3] F. Grosshans and P. Grangier, Physical Review Letters
88, 057902 (2002).

[4] F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J.
Cerf, and P. Grangier, Nature 421, 238 (2003).

[5] N. J. Cerf and P. Grangier, Journal of the Optical Society
of America B 24, 324 (2007).

[6] R. Renner and J. I. Cirac, Phys. Rev. Lett. 102, 110504
(2009).
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