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The goal of randomness extraction is to distill (almost) perfect randomness from a weak source
of randomness. When the source yields a classical string X, many extractor constructions are
known. Yet, when considering a physical randomness source, X is itself ultimately the result of
a measurement on an underlying quantum system. When characterizing the power of a source to
supply randomness it is hence a natural question to ask, how much classical randomness we can
extract from a quantum system. To tackle this question we here take on the study of quantum-
to-classical randomness extractors (QC-extractors). We provide constructions of QC-extractors
based on measurements in a full set of mutually unbiased bases (MUBs), and certain single qubit
measurements. As the first application, we show that any QC-extractor gives rise to entropic
uncertainty relations with respect to quantum side information. Such relations were previously only
known for two measurements. As the second application, we resolve the central open question in
the noisy-storage model [Wehner et al., PRL 100, 220502 (2008)] by linking security to the quantum
capacity of the adversary’s storage device.

Randomness is an essential resource for information
theory, cryptography, and computation. However, most
sources of randomness exhibit only weak forms of un-
predictability. The goal of randomness extraction is to
convert such weak randomness into (almost) uniform ran-
dom bits. Classically, a weakly random source simply
outputs a string X where the ‘amount’ of randomness
is measured in terms of the probability of guessing the
value of X ahead of time. That is, it is measured in
terms of the min-entropy Hmin(X) = − logPguess(X).
To convert X to perfect randomness, one applies a func-
tion Ext that takes X, together with a shorter string
R of perfect randomness (the seed) to an output string
K = Ext(X,R). The use of a seed is thereby neces-
sary to ensure that the extractor works for all sources X
about which we know only the min-entropy, but no ad-
ditional details of the source. Yet, for most applications
this is not quite enough, and we want an even stronger
statement. In particular, imagine that we hold some side
information E about X that increases our guessing prob-
ability to Pguess(X|E). In a cryptographic setting, side
information can e.g. be gathered by an adversary during
the course of the protocol. We thus ask that the output
is perfectly random even with respect to such side infor-
mation, i.e., uniform and uncorrelated from E. Recently,
it has been recognized that since the underlying world is
not classical, E may in fact hold quantum side informa-
tion about X [2, 3]. That this adds substantial difficulty
to the problem was emphasized in [4] where it was shown
that there are in fact situations where using the same ex-
tractor gives a uniform output K if E is classical, but
is entirely predictable when E is quantum. Positive re-

∗Electronic address: berta@phys.ethz.ch
†Electronic address: ofawzi@cs.mcgill.ca
‡Electronic address: wehner@nus.edu.sg

sults were obtained in [1, 3, 5, 6], eventually culminating
in [7, 8], proving that a wide class of classical extrac-
tors (with relatively short seed) yield a uniform output,
as long as Hmin(X|E) = − logPguess(X|E) is sufficiently
large.

Yet, in a fully quantum world we might ask ourselves:
where does X itself come from? How can we hope to
harness even weak sources to obtain surplus of classical
randomness? Indeed, for any physical source hoping to
create fresh randomness, X is the result of a measure-
ment on a quantum system A. That is, we can view
the source as consisting of in fact two processes. First,
a quantum source emits a state ρA. Second, a measure-
ment takes places yielding the classical string X. Note
that quantum mechanics does allow many different mea-
surements on ρA, and hence the question arises whether
all such measurements are equally powerful at yielding a
weakly random classical string X, or whether some are
more useful to us than others. As such, it becomes clear
that when trying to study our ability to extract random-
ness from any physical source, it is natural to ask how
much randomness we can obtain from ρA itself, rather
than a particular classical string X. This leads us to
study quantum-to-classical randomness extractors (QC-
extractors). Our goal is to answer the following ques-
tion: how can we extract classical randomness from a
physical source ρAE by performing measurements on the
quantum state ρA? In analogy to classical extractors,
we thereby want to obtain randomness from the source
given only a minimal guarantee about its randomness
- i.e. like min-entropy Hmin(X|E) for classical sources.
It is important to note that unlike the classical world,
quantum mechanics does allow for the creation of true
randomness if we are given full control of the source and
can prepare any state ρA at will. However, we want our
extractors to work for any unknown source as long as
it has sufficiently high entropy. As opposed to classical-
to-classical extractors (CC-extractors) given by functions
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Ext(·, R) mapping the outcome of the randomness source
to a string K, a QC-extractor is described by projective
measurements whose outcomes correspond to a classical
string K. That is, a QC-extractor is a set of measure-
ments

{
M1

A→K , . . . ,ML
A→K

}
, where the random seed R

determines the measurement MR
A→K that we will per-

form (see [18]).
When talking about quantum states ρAE , what is the

relevant measure of how weak or strong a source is? In-
tuitively, we would expect that the relevant measure of
how weak a quantum source is with respect to E involves
a measure of the amount of entanglement between A
and E. It turns out that the conditional min-entropy
Hmin(A|E) is exactly such a measure [19], and we find
that it is indeed the quantity that determines how many
classical random bits we can hope to extract from A.

Note that in a quantum setting, we could also con-
sider a quantum-to-quantum extractor (QQ-extractor).
That is, an extractor in which we do not measure but
merely ask that the resulting state is quantumly fully
random (i.e., maximally mixed) and uncorrelated from
E. Clearly, any QQ-extractor also forms a QC-extractor
since any subsequent measurement on the maximally
mixed state has a uniform distribution over outcomes.
As such a QQ-extractor is stronger than a QC-extractor
since we only require the output state to be close to uni-
form after performing a measurement. Constructions for
such extractors are indeed well known in quantum in-
formation theory as a consequence of a notion known
as ‘decoupling’, which plays a central role in quantum
information theory (see [20–25] and references therein).
In general, a map that transforms a state ρAE into a
state that is close to a product state σA ⊗ ρE is a de-
coupling map. Decoupling processes thereby typically
take the form of choosing a random unitary from a set
{U1, . . . , UL} toA = A1A2 and tracing out (i.e., ignoring)
the system A2. For certain classes of unitaries such as
(almost) unitary 2-designs [23, 26–28] the resulting state
ρA1E is close to maximally mixed on A1 and uncorrelated
from E, whenever Hmin(A|E) is sufficiently large. Mea-
surements consisting of applying such a unitary, followed
by a measurement on A1 thus also yield QC-extractors.
Another example of QQ-extractors are given by proto-
cols that aim to distill entanglement between A and B
from a state ρABE by means of arbitrary communication
between A and B. The resulting output state is uncor-
related from E and maximally mixed on (part of) A.
The authors of [32] also proposed a definition of quan-
tum extractors that is indeed somewhat similar to a QQ-
extractor, however without any side information E. Our
definitions (see [18]) impose two important requirements
not present in [32, Definition 5.1]. Firstly, we require the
output of the extractor to be unpredictable for any, pos-
sibly quantum, adversary with access to side information
E provided Hmin(A|E) is large enough. Secondly, we
consider strong extractors so that even given the seed R,
the output of the extractor cannot be predicted. This
allows us to employ our extractor for cryptographic pur-

poses. It also means that the output K together with R
are jointly close to uniform, meaning that we have effec-
tively created more almost perfect randomness than we
invested in the seed.

We give two novel constructions of QC-extractors. The
first one involves a full set of mutually unbiased bases
(MUBs) and pair-wise independent permutations [18,
Theorem III.8]. This construction is more appealing
than unitary 2-designs because it is combinatorially much
simpler to describe and computationally more efficient,
while having the same output size. Our second construc-
tion [18, Theorem III.9] is composed of unitaries acting
on single qudits followed by some measurements in the
computational basis. We also refer to these as bitwise
QC-extractors. An appealing feature of the measure-
ments defined by these unitaries is that they can be im-
plemented with current technology. In addition to com-
putational efficiency, the fact that the unitaries act on a
single qubit is often a desirable property for the design
of cryptographic protocols in which the creation of ran-
domness is not the only requirement for security. Finally,
we also prove that the maximum amount of random-
ness one can hope to extract is roughly n + Hmin(A|E),
where n denotes the input size [18, Proposition III.6].
This upper bound can indeed be almost achieved by
means of, e.g., our full set of MUBs QC-extractor. We
also establish basic upper and lower bounds on the seed
size for QC-extractors. The technique we use to prove
that our constructions are QC-extractors is to bound
the distance between the output of the extractor and
the desired output in Hilbert-Schmidt norm (using ideas
from [20, 21, 23, 24, 27, 28, 33]). We use the fact that
the set of all the MUB vectors forms a complex projec-
tive 2-design and that the set of permutations is pair-wise
independent.

Application to entropic uncertainty relations.— One of
the fundamental ideas in quantum mechanics is the un-
certainty principle. The security of essentially all quan-
tum cryptographic protocols is founded on its existence.
The most well-known relation is for two measurements
M1

A→K ,M2
A→K and reads [35]

1

2

2∑
j=1

H(K)ρj ≥ log
1

c
, (1)

where H(K)ρj denotes the Shannon entropy of the
post-measurement probability distributions ρjK =

Mj
A→K(ρA), and c measures the overlap between the

measurements. Note that for any quantum state ρA and
measurements for which c 6= 1, at least one of the en-
tropies has to be greater than zero. Just as extractors
can depend on side information E, it is important to re-
alize that also uncertainty should in fact not be treated
as an absolute, but with respect to the prior knowledge of
an observer who has access to a quantum system E [36].
As an illustration, take ρAE as the maximally entangled
state. In this case, for any measurement on A, there is
a corresponding measurement on E that reproduces the
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measurement outcomes. I.e., there is no uncertainty at
all! In order to take into account possibly quantum infor-
mation about A, one needs to prove new entropic uncer-
tainty relations that would have an additional term quan-
tifying the quantum side information. Unfortunately, up
to this day, we only know such relations for two measure-
ments [9, 37–42].

Here we show that any set of measurements forming
a QC-extractor yields an entropic uncertainty relation
with respect to quantum side information. We thereby
obtain relations both for the usual von Neumann (Shan-
non) entropy, as well as the min-entropy. The latter is rel-
evant for cryptographic applications. This yields the first
uncertainty relations with quantum side information for
more than two measurements. From our QC-extractors,
we obtain strong uncertainty relations for (almost) uni-
tary 2-designs, measurements in a full set of mutually
unbiased bases (MUBs) on the whole space, as well as on
many single qudits (see [18]). The latter are the measure-
ments used e.g., in the six-state protocol of QKD, and are
particularly relevant for applications in quantum cryp-
tography. Note that uncertainty relations in terms of the
min-entropy effectively help us to bound Hmin(X|ER),
where R is the seed for the QC-extractor. For example,
for the full set of MUBs we prove that

Hmin(X|ER) & log |A|+Hmin(A|E) , (2)

where the output of the measurements is called X. Since
Hmin(A|E) is negative when A and E are entangled, one
obtains less uncertainty in this case. Of course, given
such a bound, we could in turn apply a CC-extractor
to the weakly random string X to obtain a uniform K.
This underscores the beautiful relation between the con-
cept of randomness extraction from a quantum state, and
the notion of uncertainty relations with side information
in quantum physics. From a QC-extractor, we obtain un-
certainty relations. In turn, from any measurements in-
ducing strong uncertainty relations plus a CC-extractor,
we obtain a QC-extractor.

Application to cryptography.— Our second application
is to proving security in the noisy-storage model. Unfor-
tunately, it turns out that even quantum communica-
tion does not enable us to solve two-party cryptographic
problems between two parties that do not trust each
other [43]. Such problems include e.g., the well-known
primitives bit commitment and oblivious transfer [44–
48], of which merely very weak variants are possible. Yet,
since two-party cryptographic protocols are a central part
of modern cryptography, one is willing to make assump-
tions on how powerful the adversary can be in order to
obtain security. Classically, these assumptions typically
consist of two parts. First, one assumes that a partic-
ular problem requires a lot of computational resources
to solve in some precise complexity theoretic sense. Sec-

ond, one assumes that the adversary does indeed have
insufficient computational resources. However, we might
instead ask whether there are other, more physical as-
sumptions that enable us to solve such tasks? It was
suggested to assume that the attacker’s quantum stor-
age was bounded [52, 53], or, more generally, noisy [54–
56]. The central assumption of the so-called noisy-storage
model is that during waiting times ∆t introduced in the
protocol, the adversary can only keep quantum informa-
tion in his quantum storage device F . Otherwise, the
attacker may be all powerful. In particular, he can store
an unlimited amount of classical information, and per-
form computations ‘instantaneously’. The latter implies
that the attacker could encode his quantum information
into an arbitrarily complicated error correcting code to
protect it from any noise in F . Of particular interest
are thereby quantum memories consisting of N ‘memory
cells’, each of which undergoes some noise described by
a channel N . That is, the memory device is of the form
F = N⊗N . Note that the bounded storage model is a
special case, where each memory cell is just one qubit,
and N is the identity channel. To relate the number
of transmitted qubits n to the size of the storage de-
vice one typically chooses the storage rate ν such that
N = ν ·n. Since its inception [54], it was clear that secu-
rity in the noisy-storage model should be related to the
question of how much information the adversary can send
through his noisy storage device. That is, the capacity
of F to transmit quantum information. Initial progress
was made in [56] where security was linked to the stor-
age device’s ability to transmit classical information and
shown against fully general attacks. Further progress was
made only very recently, linking the security to the so-
called entanglement cost of the storage device [57], which
lies between its classical and quantum capacities. Here,
we finally resolve the question of linking security in the
noisy-storage model to the quantum capacity of the stor-
age device. More precisely, we show that any two-party
cryptographic primitive can be implemented securely un-
der the assumption that the adversary is restricted to
using a quantum storage device of the form F = N⊗ν·n
by means of a protocol transmitting n qubits whenever
ν · Q(N ) < 1 and 2 − log(3) . ν · γQ(N , 1/ν), where
Q(N ) is the quantum capacity of the channel N and
γQ(N , 1/ν) is the so-called strong converse parameter of
N for sending information through F at rate R = 1/ν
(see [18]). Note that the second condition actually does
favor small ν, since γQ(N , 1/ν) is large whenever the rate
R = 1/ν is large. A similar statement can be obtained
for general channels F (see [18]). We prove our result by
showing the security of a simple quantum protocol for the
cryptographic primitive weak string erasure [56], which
is known to be universal for two-party secure computa-
tion [56].

[1] R. König and B. M. Terhal, IEEE Transactions on Infor-
mation Theory 54, 749 (2008).

[2] R. König, U. Maurer, and R. Renner, IEEE Transactions



4

on Information Theory 51, 2391 (2005), arXiv:quant-
ph/0305154v3.

[3] R. Renner and R. König, Theory of Cryptography , 407
(2005), arXiv:quant-ph/0403133v2.

[4] D. Gavinsky, J. Kempe, I. Kerenidis, R. Raz, and
R. de Wolf, in Proceedings of 39th ACM STOC (ACM,
2007) pp. 516–525.

[5] R. Renner, International Journal of Quantum Informa-
tion 6, 1 (2008), arXiv:quant-ph/0512258v2.

[6] M. Tomamichel, C. Schaffner, A. Smith, and R. Renner,
Proceedings of IEEE Symposium on Information Theory
, 2703 (2010), arXiv:1002.2436v1.

[7] A. Ta-Shma, in Proceedings of 41st ACM STOC (ACM,
2009) pp. 401–408.

[8] A. De, C. Portmann, T. Vidick, and R. Renner, (2009),
arXiv:0912.5514.

[9] M. Tomamichel and R. Renner, Physical Review Letters
106, 110506 (2011), arXiv:1009.2015v2.

[10] E. Hänggi and M. Tomamichel, (2011),
arXiv:1108.5349v1.

[11] R. Colbeck, Quantum and relativistic protocols for se-
cure multi-party computation, Ph.D. thesis, University of
Cambridge (2006), arXiv:0911.3814v2.

[12] S. Pironio, A. Acin, S. Massar, A. de la Giroday, D. Mat-
sukevich, P. Maunz, S. Olmschenk, D. Hayes, and
L. Luo, Nature 464, 1021 (2010), arXiv:0911.3427v3.

[13] A. Acin, S. Massar, and S. Pironio, (2011),
arXiv:1107.2754v1.

[14] R. Colbeck and A. Kent, Journal of Physics A 44, 095305
(2011), arXiv:1011.4474v3.

[15] U. Vazirani and T. Vidick, (2011), arXiv:1111.6054v1.
[16] S. Fehr, R. Gelles, and C. Schaffner, (2011),

arXiv:1111.6052v2.
[17] S. Pironio and S. Massar, (2011), arXiv:1111.6056v2.
[18] M. Berta, O. Fawzi, and S. Wehner, (2011),

arXiv:1111.2026v2.
[19] R. König, R. Renner, and C. Schaffner, IEEE

Transactions on Information Theory 55, 4674 (2009),
arXiv:0807.1338v1.

[20] M. Horodecki, J. Oppenheim, and A. Winter, Nature
436, 673 (2005), arXiv:quant-ph/0505062v1.

[21] M. Horodecki, J. Oppenheim, and A. Winter, Com-
munications in Mathematical Physics 269, 107 (2006),
arXiv:quant-ph/0512247v1.

[22] P. Hayden, M. Horodecki, J. Yard, and A. Winter,
Open Systems and Information Dynamics 15, 7 (2008),
arXiv:quant-ph/0702005v1.

[23] F. Dupuis, The Decoupling Approach to Quantum In-
formation Theory, Ph.D. thesis, Université de Montréal
(2009), arXiv:1004.1641v1.

[24] F. Dupuis, M. Berta, J. Wullschleger, and R. Renner,
(2010), arXiv:1012.6044v1.

[25] A. Abeyesinghe, I. Devetak, P. Hayden, and A. Win-
ter, Proceedings of Royal Society A 465, 2537 (2009),
arXiv:quant-ph/0606225v1.

[26] P. Hayden and J. Preskill, Journal of High Energy
Physics , 0709:102 (2007), arXiv:0708.4025v2.

[27] O. Szehr, F. Dupuis, M. Tomamichel, and R. Renner,
“Decoupling with unitary almost two-designs,” (2011),
arXiv:1109.4348v1.

[28] O. Szehr, Decoupling Theorems, Master’s thesis, ETH
Zurich (2011).

[29] M. Horodecki, J. Oppenheim, and A. Winter, “Quantum
mutual independence,” (2009), arXiv:0902.0912.

[30] I. Devetak and A. Winter, IEEE Transaction on
Information Theory 50, 3183 (2004), arXiv:quant-
ph/0304196v2.

[31] A. Ambainis, A. Smith, and K. Yang, in Proceedings of
17th IEEE CCC (2002) p. 103.

[32] A. Ben-Aroya, O. Schwartz, and A. Ta-Shma, Theory of
Computing 6, 47 (2010).

[33] M. Berta, Single-shot quantum state merging, Master’s
thesis, ETH Zurich (2008), arXiv:0912.4495v1.

[34] S. Wehner and A. Winter, New Journal of Physics 12,
025009 (2010), arXiv:0907.3704v1.

[35] H. Maassen and J. Uffink, Physical Review Letters 60,
1103 (1988).

[36] A. Winter, Nature Physics 6, 640 (2010).
[37] M. Berta, M. Christandl, R. Colbeck, J. M. Renes,

and R. Renner, Nature Physics 6, 659 (2010),
arXiv:0909.0950v4.

[38] J. M. Renes and J.-C. Boileau, Physical Review Letters
103, 020402 (2009), arXiv:0806.3984v2.

[39] P. J. Coles, L. Yu, and M. Zwolak, (2011),
arXiv:1105.4865v2.

[40] P. J. Coles, R. Colbeck, L. Yu, and M. Zwolak, (2012),
arXiv:1112.0543v1.

[41] P. J. Coles, L. Yu, V. Gheorghiu, and R. B.
Griffiths, Physical Review A 83, 062338 (2011),
arXiv:1006.4859v5.

[42] M. Christandl and A. Winter, IEEE Transactions
on Information Theory 51, 3159 (2005), arXiv:quant-
ph/0501090v2.

[43] H.-K. Lo, Physical Review A 56, 1154 (1997).
[44] H.-K. Lo and H. F. Chau, Physical Review Letters 78,

3410 (1997).
[45] H. Chau and H.-K. Lo, Fortschritte der Physik 46, 507

(1998), republished in ’Quantum Computing, where do
we want to go tomorrow?’ edited by S. Braunstein,
arXiv:quant-ph/9709053v2.

[46] D. Mayers, Physical Review Letters 78, 3414 (1997).
[47] H. Buhrman, M. Christandl, P. Hayden, H.-K. Lo, and

S. Wehner, Physical Review Letters 97, 250501 (2006),
arXiv:quant-ph/0609237v2, quant-ph/0609237 .

[48] G. D’Ariano, D. Kretschmann, D. Schlingemann, and
R. Werner, “Quantum bit commitment revisited: the
possible and the impossible,” (2007), arXiv:quant-
ph/0605224v2.

[49] U. Maurer, Journal of Cryptology 5, 53 (1992).
[50] C. Cachin and U. M. Maurer, in Proceedings of CRYPTO

1997, Lecture Notes in Computer Science (1997) pp. 292–
306.

[51] S. Dziembowski and U. Maurer, in Proceedings of EU-
ROCRYPT, Springer Lecture Notes in Computer Science
(2004) pp. 126–137.

[52] I. B. Damgård, S. Fehr, L. Salvail, and C. Schaffner,
in Proceedings of 46th IEEE Symposium on Foundations
of Computer Science (2005) pp. 449–458, arXiv:quant-
ph/0508222v2.

[53] I. B. Damgård, S. Fehr, R. Renner, L. Salvail, and
C. Schaffner, in Proceedings of CRYPTO 2007, Springer
Lecture Notes in Computer Science (2007) pp. 360–378,
arXiv:quant-ph/0612014v2.

[54] S. Wehner, C. Schaffner, and B. Terhal, Physical Review
Letters 100, 220502 (2008), arXiv:0711.2895v3.

[55] C. Schaffner, B. Terhal, and S. Wehner, Quantum Infor-
mation & Computation 9, 11 (2008), arXiv:0807.1333v3.

[56] R. König, S. Wehner, and J. Wullschleger, IEEE Trans-

http://dx.doi.org/10.4086/toc.2010.v006a003
http://dx.doi.org/10.4086/toc.2010.v006a003
http://arxiv.org/abs/quant-ph/0609237


5

actions on Information Theory - To appear (2009),
arXiv:0906.1030v3.

[57] M. Berta, F. Brandao, M. Christandl, and S. Wehner,

“Entanglement cost of quantum channels,” (2011),
arXiv:1108.5357v2.


	References

