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We provide a security analysis for continuous variable quantum key distribution protocols based
on the transmission of two-mode squeezed vacuum states measured via homodyne detection. We
employ a version of the entropic uncertainty relation for smooth entropies to give a lower bound on
the number of secret bits which can be extracted from a finite number of runs of the protocol. This
bound is valid under general coherent attacks, and gives rise to keys which are composably secure.
For comparison, we also give a lower bound valid under the assumption of collective attacks. For
both scenarios, we find positive key rates using experimental parameters reachable today.

The task in quantum key distribution (QKD) is to gen-
erate a shared key, secret from any eavesdropper (Eve),
between two distant parties (Alice and Bob) using com-
munication over a public quantum channel and an au-
thenticated classical channel [1]. Many different imple-
mentations of QKD have been proposed, each one with
individual strengths and weaknesses. Early proposals are
based on exchanging qubits, and are part of the family of
discrete variable (DV) QKD protocols. Continuous vari-
able (CV) protocols have later been proposed and offer
the possibility to use standard telecom technologies [2].

A generic QKD protocol starts with the distribution of,
say, N quantum states between the honest parties which
are then measured according to the rules of the protocol.
A certain part of the measurement outcomes is then used
to estimate Eve’s information about the remaining data
from which a key of length ` is generated by classical post-
processing. The goal of a finite-key security analysis is
to prove that the key is secure against any wiretapping
strategy of Eve, up to a small failure probability.

Eve’s knowledge can be bounded by the probabil-
ity that she correctly guesses Alice’s measurement out-
comes. This is expressed by the conditional smooth min-
entropy [3] of the data from which the key is generated
given Eve’s quantum system. This ensures composable
security [4]. Since the actual state is not known, the
smooth min-entropy has to be bounded for the worst case
compatible with the observed measurement data. This
task is often simplified by additional assumptions about
the power of the eavesdropper. Instead of allowing the
most general, coherent attack on the quantum communi-
cation between Alice and Bob, the eavesdropper is often
restricted to collective attacks, meaning that every sig-
nal is attacked with the same quantum operation. Under
this assumption, Alice and Bob can employ state tomog-
raphy to estimate the state they share, and using this
knowledge, it is possible to bound Eve’s information and
to ensure security. In the case of DV QKD, these se-
curity proofs can then often be lifted to security proofs
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against coherent attacks using exponential de Finetti the-
orems [5] or the post-selection technique [6].

Most security analysis for CV protocols neglect finite-
key effects and consider asymptotic rates by using the
Devetak-Winter formula [7] . We are only aware of [8],
where a finite-key analysis for specific protocols under
the assumption of collective Gaussian attacks was pro-
vided. However, the transfer of the exponential de
Finetti technique to the infinite-dimensional setting is
very subtle. This is because exponential de Finetti the-
orems do in general not hold in infinite-dimensional sys-
tems [9], but only under the additional assumption of
energy bounds [10]. It is often argued that, using these
results, much of the DV theory can be transferred to CV
systems. Unfortunately, this approach provides only very
pessimistic key rate estimates for finite block lengths.

Recently, a more direct approach of proving security
against coherent attacks was presented in [11], based on
an entropic uncertainty relation with quantum side infor-
mation for smooth entropies [12]. This allows to give a
bound on Eve’s information about Alice’s measurement
outcomes in terms of the correlation between Alice and
Bob. Based on the extension of the smooth entropy for-
malism to the infinite-dimensional setting [13, 14], it is
the objective of this letter to apply the above reasoning
to an entanglement based CV protocol using two-mode
squeezed vacuum states measured via homodyne detec-
tion.
Security Definition and Key Rates.—A generic QKD

protocol between two honest parties, Alice (A) and Bob
(B) either aborts or outputs a key which consists of bit
strings SA and SB on Alice’s and Bob’s side, respectively.
We denote by E the information which is wiretapped dur-
ing the run of the protocol by an attack on the quantum
channel. For CV systems this is modeled on an infinite-
dimensional Hilbert space. The state of SA and E can
be described as a classical quantum state

ωSAE =
∑
s

|s〉〈s| ⊗ ωsE , (1)

where ωsE are states on Eve’s system. Three requirements
have to be fulfilled by an ideal protocol: correctness, se-
crecy and robustness. Correctness is achieved when the
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output on Alice’s and Bob’s side agree, SA = SB . Secrecy
of a key means that SA is uniformly distributed and in-
dependent of E and thus given by ωid

SAE
= τSA

⊗ σE ,
with τSA

the uniform mixture of keys, and σE an arbi-
trary state on the E system. A protocol is called secure
if it is both correct and secret. Finally, we call an ideal
protocol robust if it never aborts when no eavesdropper
is present.

In reality we can only hope to achieve an almost ideal
protocol. For small parameters εc, εs and an abortion
probability pabort, we require that the protocol is εc-
correct, i.e. Pr[SA 6= SB ] ≤ εc, and that the protocol is
εs-secret, i.e. (1− pabort) infσ

1
2‖ωSAE − τSA

⊗ σE‖ ≤ εs.
Note that a protocol which always aborts is secure. Thus
we may impose an additional requirement on the robust-
ness, e.g., pabort < 1. This security definition also ensures
that the protocol is secure in the framework of compos-
able security [4], in which different cryptographic proto-
cols can be combined without compromising the overall
security. We note that this is not the case for the security
definition based on a small mutual information between
the eavesdropper and the key [15].

The measurement step of a QKD protocol produces a
pair of raw keys, XA and XB , held by Alice and Bob. If
the protocol does not abort, the secret keys SA and SB
are extracted using classical error correction and privacy
amplification schemes. We do not discuss the error cor-
rection scheme here and simply assume that it will leak
leakEC bits of information about the key to the eaves-
dropper. The correctness is checked using a hash func-
tion evaluated on both resulting strings, which leads to
an additional leakage of order O(log 1

εc
) (see [11]).

In the privacy amplification step, two-universal hash
functions are used to compress the raw key to a final
length of ` bits. Roughly speaking, this reduces Eve’s
knowledge about Alice’s key by N−` bits. Hence, choos-
ing ` sufficiently small ensures that Eve has no informa-
tion about the resulting bit strings and the key is inde-
pendent of E. Formally, Eve’s uncertainty is measured in
terms of the probability that she can guess Alice’s raw key
XA, i.e. the conditional min-entropy Hmin(XA|E) [16].
In particular, the resulting key is εs-secret if [3, 14, 17]

` . Hε
min(XA|E)ω − leakEC −O(log

1

εsεc
) . (2)

Here, the smooth min-entropy Hε
min(XA|E) is the op-

timization of the min-entropy over states which are
ε(εs, pabort) close to ωXAE , where ωXAE denotes the joint
state prior to the classical post-processing conditioned
on the event that the protocol does not abort. We de-
rive now lower bounds on the smooth min-entropy for the
following protocol.
The Protocol.— We consider a source located in Al-

ice’s lab that produces an entangled state by mixing
two squeezed vacuum states on a balanced beam splitter.
We assume that each beam consists of only one bosonic
mode. Alice sends one beam to Bob whereupon both per-
form a homodyne measurement. They choose uniformly

at random between two canonically conjugated quadra-
ture observables, amplitude and phase, such that Alice’s
and Bob’s outcomes are maximally correlated whenever
their choice agree. After a certain number of signals are
measured, Alice and Bob execute a sifting and param-
eter estimation step. They first check if all quadrature
measurements are below a certain threshold 2α (α > 0,
~ = 1) and abort the protocol otherwise. The measure-
ment range [−2α, 2α] is divided into intervals of equal
length δ which are enumerated by X = {1, ..., d4α/δe}.
They reveal their measurement choices and discard the
data in which they have measured different quadratures
ending up with a string of N measurement results. Then,
random samples of length k, Xpe

A , X
pe
B ∈ X k are used for

parameter estimation, checking that none of the abso-
lute values of these quadrature measurements exceeds α
and that the distance between Xpe

A and Xpe
B measured

by d(Y, Z) = 1
k

∑k
i=1 |Yk − Zk| is smaller than d0. If

these tests fail the protocol is aborted. Otherwise, it pro-
ceeds with the classical post-processing on the remaining
strings XA and XB .

The goal is to bound the smooth min-entropy condi-
tioned on the event that the protocol does not abort.
For that we use an infinite-dimensional version of the en-
tropic uncertainty relation for smooth entropies with side
information [14], combining the uncertainty principle for
complementary measurements with monogamy of entan-
glement. It states that Eve’s information about the mea-
surement outcomes XA can be bounded by using the the
complementary of the measurements and the correlation
between XA and XB . In particular, if Alice and Bob are
highly correlated after measuring e.g., the phase quadra-
ture, then Eve’s knowledge about the outcome of the am-
plitude measurement is nearly zero, since the observables
are maximally complementary. We measure this correla-
tion strength by the smooth max-entropyHε

max(XA|XB),
which characterizes the amount of information Alice has
to send Bob to retrieve XA. This leads to the bound [16]

Hε
min(XA|E)ω ≥ n log

1

c(δ)
−Hε′

max(XA|XB)ω , (3)

where ε′ is equal to ε minus a correction term depending
on pabort, α, k, and N . The function c(δ) is the overlap
of the two conjugated quadrature measurements on an
interval of length δ which is well approximated by c(δ) ≈
δ2/(2π) for sufficiently small δ [16]. Equation (3) assumes
a uniformly random choice of measurement settings.

This reduces the problem to upper bounding the
smooth max-entropy between XA and XB . In the limit
of large n this can be done by n · log γ(d(XA, XB)), where
γ is a function arising from a large deviation considera-
tion. Using sampling theory, the quantity d(XA, XB) can
then, with high probability, be estimated by d(Xpe

A , X
pe
B )

plus a correction µ, which quantifies its statistical devi-
ation to d(XA, XB) and depends on α, k and n. Since
the protocol aborts if d(Xpe

A , X
pe
B ) > d0, we obtain the

following formula for the key length [16]. For parameters
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k, α, δ, d0, an εs-secret key of length

` = n[log
1

c(δ)
− log γ(d0 + µ)]− leakEC −O(log

1

εsεc
) .

can be extracted.

FIG. 1. Key rate `/N against coherent attacks for an input
squeezing/antisqueezing of 11dB/16dB and additional sym-
metric losses of 0% (solid line), 4% (dashed line) and 6%
(dash-dotted line). For the chosen security parameters see
the main text.

Note that the measurement device on Bob’s side need
not be trusted, except that measurements on different
signals must commute. The only requirement is that Al-
ice’s measurement device is described by projections onto
two canonical variable used in the computation of c(δ).
Since the source is assumed to be located in Alice’s lab,
the additional reference signal (local oscillator) used for
the homodyne detection on Alice’s side is not subject
to any attacks, and is therefore covered by our security
analysis. The proof technique also applies to reverse rec-
onciliation. However, the overlap has to be calculated
for Bob’s measurement which might be subjected to at-
tacks on the reference signal. Since the estimate of the
smooth min-entropy is symmetric in XA and XB only
leakEC would change.

We calculated the correlation between XA and XB un-
der the assumption of an identically and independently
distributed source producing states with an inputsqueez-
ing of 11dB and antisqueezing of 16dB. Squeezing at
this level has recently been realized in an experiment at
1550nm [18]. Our noise model consists of loss and excess
noise, where the latter is set to be 1% as it is mainly due
to the classical data acquisition and can in principle be
reduced [16]. The leakage term is estimated assuming an

error correction efficiency of 0.95 [19]. In Fig. 1 the re-
sulting key rates `/N are plotted for different symmetric
losses. We have set security parameters εs = εc = 10−13,
and α = 30 such that in the absence of any eavesdrop-
per the protocol aborts with probability less than 0.01.
The optimization over the other free parameters is done
numerically for each N . Typical values for N = 109 are
k = 108 and δ = 0.02.

In Fig. 2, we compare the key rate for coherent attacks
with an analysis against collective Gaussian attacks [16]
and the Devetak-Winter rate for perfect error correc-
tion [7, 14].

FIG. 2. Key rate versus losses secure against coherent
attacks at N = 109 (dot-dashed line), collective Gaussian
attacks at N = 109 (dashed line), and the Devetak-Winter
rate [7, 14] for perfect information reconciliation (solid line).
Squeezing strength and security parameters are chosen as be-
fore.

Discussion and Outlook.—We provided a finite-key se-
curity analysis for a continuous variable QKD protocol
and obtain a composable secure positive key rate against
coherent attacks for experimentally feasible parameters.
We compare it with key rates computed under the as-
sumption of collective Gaussian attacks and find that
they are significantly higher. This is because the applied
entropic uncertainty relation, Eq. (3), is not tight for the
considered state, which might be improved by a state de-
pendent version thereof. Our results for collective attacks
suggest that an extension of the post-selection technique
to infinite-dimensional systems (see [20] for a proposal)
is desirable. In order to relax the assumptions in the
security proof against coherent attacks, it would be in-
teresting to study the overlap for more realistic models of
the quadrature measurements, which may include a con-
tinuum of modes. Moreover, our arguments might also
be applicable to other CV QKD schemes [21, 22].
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