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We investigate two-party cryptographic protocols that are secure under assumptions mo-
tivated by physics, namely relativistic assumptions (no-signalling) and quantum mechanics.
In particular, we discuss split models, i.e. models in which certain parties are not allowed to
communicate during certain phases of the protocol, for the purpose of bit commitment. We
find the minimal splits that are necessary to evade the Mayers-Lo-Chau no-go argument and
present protocols that achieve security in these split models. Furthermore, we introduce the
notion of local versus global commands, a subtle issue that arises when the split committer
is required to delegate agents to perform the open phase separately, without communication.
We argue that classical protocols are insecure in the global command model, even when the
committer is split. On the other hand, we provide a rigorous security proof in the global
command model for Kent’s quantum protocol [ ]. The proof employs two fundamen-
tal principles of modern physics, the no-signalling property of relativity and the uncertainty
principle of quantum mechanics.

I. INTRODUCTION

The goal of two-party cryptography is to enable two parties, Alice and Bob, to solve a
task in cooperation even if they do not trust each other. An example of such a task is the
cryptographic primitive known as bit commitment. A bit commitment protocol traditionally
consists of two phases: In the commit phase, Bob commits a bit to Alice!, who receives some
form of confirmation that a commitment has been made. In the open phase, Bob reveals the bit to
Alice. Security means that Bob should not be able to reveal anything but the committed bit, but
nevertheless Alice cannot gain any information about the bit before the open phase. While many
two-party cryptographic primitives have been defined, oblivious transfer and bit commitment
are undoubtedly among the most important ones because they form essential building blocks for
more complex problems | ].

Ideally, we would like to have protocols for such primitives that guarantee security with-
out relying on any subjective (e.g. that a safe is difficult to open) or computational (e.g. that
factoring a product of two large primes is difficult) assumptions. Unfortunately, however, it
turned out that this is impossible, even if we allow quantum communication between Alice and
Bob | , , |. Much work has thus been invested into determining what kind
of assumptions allow us to obtain security. Of particular interest to this work are thereby as-
sumptions of a physical nature, leading to information-theoretic security. Classical examples
of such assumptions are, for example, access to some very special forms of shared random-
ness supplied in advance | ], access to a noisy communication channel ? | , |
or a limited amount of memory | |. Similarly, it has been shown that security is possi-
ble if the attacker’s quantum memory is bounded | , , | or more generally
noisy | , , .

Another assumption is that of non-communication. More precisely, one imagines that each
party is split up into multiple agents which cannot communicate with each other for at least
some parts of the protocol. Intuitively, the use of non-communicating agents can evade the

! Usually it is Alice who commits a bit to Bob. We decided to swap Alice and Bob as it allows us to simplify
the notation in the proof of our main result. In the whole paper it is Bob who commits a bit to Alice.

2 To be more specific what is needed is a channel with a guaranteed level of noise. It is important that the noise
is truly random and cannot be influenced by either party.



standard no-go argument because while all agents in total have enough information to cheat, no
single agent can achieve it on its own.

On the one hand, such non-communicating models have received considerable attention in
classical cryptography, where such agents are often referred to as servers | | or provers | .
For example, Ben-Or et al. | | considered a simple protocol for bit commitment that is
secure classically as long as the committer (Bob) is split up into two agents, Bob and Brian, which
cannot communicate at any points during the protocol. This has been extended to a similar pro-
tocol that is secure even in the quantum setting | |. Similarly, many classical protocols for
other tasks have been proposed under the assumption of non-communication, such as distributed
oblivious transfer | |, i.e. symmetric private information retrieval | , , ],
or simple private information retrieval | |. In all such protocols it was assumed that the
agents of one party can never communicate during any point in the protocol, or thereafter.

On the other hand, physicists have consider so-called relativistic assumptions for cryp-
tography | , , , , |. In essence, this takes the form of non-
communicating models where the fact that a party’s agents cannot communicate is justified
by their physical separation and the theory of relativity. The key difference to classical non-
communicating models is that in relativistic models the separation is generally only imposed
during very specific periods of the protocol, whereas classical models generally assume a separa-
tion, i.e. non-communication, for all times. For example, relativistic protocols may only demand
a split into several non-communicating agents after the commit phase of a bit commitment
protocol is over | , |]. Another assumption based on relativity is the notion of
guaranteed message delivery times or the assumption of an accelerated observer | |.

Here, we will consider the security of bit commitment protocols under the assumption that
one (or both) parties Alice and Bob, can be split into non-communicating agents. Motivated
by the relativistic protocols of | , |, we thereby do not demand that the parties
are split into non-communicating agents for all time, but merely during certain points in the
protocol. For a bit commitment protocol, these points are naturally defined as: the commit
phase, the wait phase, the open phase, and the verification phases. We thereby introduce the
explicit notion of the wait and verification phases, which are usually only implicitly defined, in
order to precisely divide the overall interaction between Alice and Bob into time frames. Our
first contribution is

e A classification of non-communicating models into subclasses which are characterised by
the phases in which either Alice (or Bob) is split into non-communicating agents. We find
that we can reduce our considerations to two minimal models, namely the one in which
Alice is split during the commit and wait phases (a-split) and the one in which Bob is
split during the wait and open phases (S-split) (Fig. 1). Either of these two models allows
to evade the no-go theorem because the operations required for cheating are forbidden by
the split.

1. commit 2. wait 3. open 4. verify

« : Alice is split

[ : Bob is split

FIG. 1: The two types of separations that are necessary for security - o and .

Next to the question during which phases the parties are actually split into non-communicating
agents, there is another subtlety to address. If cheating Bob is split into two agents, Bob and



Brian, during the open phase of the commitment, who decides which bit should be opened? In
standard bit commitment protocols this question does not arise, as there is only one cheating
party. Bob will simply announce to Alice that he wishes to unveil a particular bit, and try to
provide a matching proof. However, in a model of several distinct agents, Bob and Brian could
conceivably base the decision about which bit to unveil on some external input. For example,
depending on the latest stock market news they both decide to open a 0 or a 1, even though
they themselves cannot communicate. Intuitively, we would like a bit commitment scheme to
be secure in the latter setting, analogous to the case of a single party which can of course
also base its decision on external events. To capture this subtlety, we imagine that there is an
external commander, Victor, who dictates which bit should be unveiled. We thereby speak of
local command if Victor only issues a command to one of the two agents, Bob. We speak of
global command if Victor issues a matching command to both Bob and Brian (Fig. 2). Note
that a related concept has recently been introduced in | | under the name of the oracle
input model. In a model without separated agents, the local and global command models are
equivalent but we will see that they differ in a relativistic setting. More precisely, our second
contribution is to

e Introduce the distinction between local and global command, and apply it to models based
on the B-split. We show that there is a simple classical protocol that is secure under the
local command. However, we proceed to show that there exists no classical protocol that
is secure under global command in the class of S-split models.

Victor Victor
Bob | Brian Bob | Brian
(a) Local command (b) Global command

FIG. 2: If Bob is required to perform two separate openings it becomes important whether the
command from Victor indicating which bit he is supposed to unveil is transmitted to just one
or both agents.

The latter naturally leads to the question, whether there is a quantum protocol that is secure even
when Victor issues a global command. A candidate protocol was proposed by Kent | |
in which Bob and Brian are separated during the wait and open phases. This protocol has
the very appealing feature that it can be implemented by the honest parties using only single

qubit measurements in BB84 | | bases, without the use of any quantum memory. Yet, no
rigorous security proof was provided in | |, neither under local nor global command. We
show that the flying agents model, proposed in | , |, belongs to the class of non-

communicating models (flying agents model requires both Alice and Bob to be split during the
wait and open phases). Our final contribution is to

e Provide a formal security proof for the protocol proposed in | | in the global com-
mand model.

As our proof applies to the less restrictive S-split model it also applies to Kent’s flying agents
model. Our proof thereby requires two ingredients: First, we make use of the fact that the
two agents cannot communicate. Second, we employ an uncertainty relation in terms of min-
and max-entropies | |. This relation was previously used to prove the security of quantum
key distribution, and our result illustrates its power to prove security of other cryptographic
primitives.
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