
Quantum Cryptography with local Bell tests

Charles Ci Wen Lim,1, ∗ Christopher Portmann,1, 2 Marco Tomamichel,2, 3 Renato Renner,2 and Nicolas Gisin1

1Group of Applied Physics, University of Geneva, Switzerland.
2Institute for Theoretical Physics, ETH Zurich, Switzerland.

3Centre for Quantum Technologies, National University of Singapore, Singapore.

FORMULATION OF PROBLEM

Quantum key distribution (QKD) has progressed much
in both theory and practice [1]: various security proof
techniques have been developed and milestones have been
achieved in field tests. However, the gap between the-
ory and practice has not been completely bridged. This
impasse comes from the fact that the theoretical device
models used by most security proof techniques often do
not characterize the actual devices fully, and as a result,
most security proofs do not apply. An immediate solution
is to carefully characterize actual devices against theoret-
ical models and include the discrepancies into the security
analysis [2]. However, the task of characterizing an ac-
tual device is not trivial, as there are many ways a device
can go wrong. As such, an incomplete characterization of
actual devices is likely and this may be exploited by the
adversary to break the security. Apart from the ardu-
ous task of identifying all possible discrepancies, we also
have to consider the impact of including the additional
parameters into the finite-key security analysis [3–6]. For
instance, if the number of discrepancies is large, then the
additional parameters required to characterize the dis-
crepancies, together with its statistical fluctuations due
to finite sample sizes, are likely to penalize the security
performances. Therefore for practical quantum cryptog-
raphy, it is of great interest to consider a paradigm shift
in the assessment of security, namely a method that is
able to tackle all possible discrepancies between theory
and practice and compress it into a small number of pa-
rameters.

RESULTS

We propose the concept of self-testing QKD which is
based on a novel local self-testing method [7]. In particu-
lar, devices are tested locally independent of the quantum
channel, that is, Alice and Bob perform Clauser-Horne-
Shimony-Holt (CHSH) tests on their own devices, inde-
pendent of each other and the quantum channel (includ-
ing the channel loss). As a result, the quantum channel
is not included in CHSH test. Furthermore, our protocol
adopts a tripartite model, that is, we introduce an ad-
ditional party Charlie—not necessarily trusted by Alice
and Bob—whose task is to perform a quantum exchange
(similar to entanglement swapping) on the states sent by
Alice and Bob and communicates the outcome pass or

fail to them. Then, the security assessment of the quan-
tum channel follows the channel estimation technique of
BB84 QKD protocol, i.e., checking for errors in the bases
X and Z. Therefore, by deriving the relation between
CHSH test and a recent security proof technique (the
smooth version of entropic uncertainty relation [6, 8, 9]),
the finite-key security proof is obtained under the follow-
ing assumptions:

1. Alice and Bob localities are secure.

2. Quantum devices do not have internal classical or
quantum memories.

3. Alice and Bob have access to trusted classical de-
vices like calculators and local trusted sources of
randomness.

4. Alice and Bob have access to an authenticated, but
otherwise insecure classical channel.

5. The marginal states remaining at Alice and Bob lo-
calities are independent of whether Charlie’s quan-
tum exchange passes or fails

Furthermore, our result—a lower bound on the secret
key rate—is intuitively related to the almost tight finite-
key analysis [6] of BB84 QKD protocol and it differs only
by a term that is dependent on the CHSH value.

In this submission, we provide our protocol definition,
the basic ideas behind the security and the finite-key
simulation results. The technical results (including
the bound on the secret key rate) are provided in the
supplementary information.

Related Work. The main difference between self-
testing QKD and device-independent QKD [10–13] lies
in the use of CHSH test, in particular, we use it to test
devices locally while they use it to test both the quan-
tum channel and devices. Accordingly, self-testing QKD
offers a more refined security assessment as compared to
device-independent QKD.

Details

We start by defining the network topology of self-
testing QKD which adopts the tripartite concept model
of side-channel-free QKD [14, 15]. More specifically, the
tripartite concept model involves three parties: Alice and
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Bob want to perform quantum cryptography, while Char-
lie plays the role of a quantum exchange akin to a tele-
phone exchange that connects phone calls. At the quan-
tum level, Alice and Bob are connected to Charlie via un-
specified quantum channels, e.g., optical fibers provided
by Charlie or someone else. On the classical level, Alice
and Bob are connected via an authenticated, but oth-
erwise insecure classical channel, in addition, they also
receive radio broadcasts from Charlie.

Quantum ExchangeAlice's locality Bob's locality

FIG. 1. Quantum exchange. Alice and Bob each send
a quantum state to Charlie. Then, Charlie is supposed to
make a quantum measurement on the quantum states and
broadcast the outcome {pass, fail} to both Alice and Bob. If
the outcome is successful, Alice and Bob share an entangled
quantum channel.

The role of Charlie as a quantum exchange is to estab-
lish an entangled quantum channel between Alice and
Bob and this is accomplished by making a quantum
measurement on the quantum states sent by Alice and
Bob and communicating the outcome to them. Ideally,
quantum exchange corresponds to entanglement swap-
ping. Furthermore, quantum exchange also acts like a
“Hilbert space filter” [16], filtering out all probing type
side-channels, be it quantum or classical.

Next, we discuss the procedure for Alice. The same
holds for Bob. The locality—typically a laboratory—of
Alice is assumed to be secure, that is to say, leakage of
unauthorized information is forbidden. Inside the secure
locality, there are three devices: a source that claims to
produce bipartite maximally entangled states and two
measurement devices. The first measurement device has
two settings {Z,X} with binary outputs and the second
measurement has three settings {U,V,P} where the first
two settings produce binary outputs and the last setting
allows Alice to keep one half and sends the other half of
the bipartite state to Charlie.

By arranging the devices according to the self-testing
setup [7], Alice has two choices, namely she can either
select P and let one half of the bipartite state be sent to
Charlie via the quantum channel or use the settings U,V
to make a CHSH test. We refer to the former as sub-
protocol ΓQKD and the latter as sub-protocol ΓCHSH.

The purpose of making a CHSH test is to enforce the
uncertainty principle under minimal assumptions. More
precisely, suppose Alice wants to generate a secret key
from basis X and use basis Z for channel error rate esti-
mation. Then from the entropic uncertainty relation [?
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{0, 1}{0, 1}

⇢AT ⇢T

Secure boundary 
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FIG. 2. Schematic of self-testing setup. Devices with
dashed boundary represent untrusted devices. Note that the
marginal state ρA is assumed to be independent of quantum
exchange outcome.

], we know that the security of the key depends on the
relationship between the quantum measurements corre-
sponding to bases X and Z. If the quantum measurements
commute, then keys generated from basis X cannot be
secure. On the other hand, commuting quantum mea-
surements cannot be used to violate CHSH inequality, in
fact, the optimal CHSH value is necessarily given by anti-
commuting quantum measurements [17]. This brings us
to our first result which is a statement about the rela-
tion between CHSH test and the entropic uncertainty
relation1. Roughly speaking, we bound the relationship
of the quantum measurements corresponding to bases X
and Z with the CHSH test that uses the same quantum
measurements, which in turn allows us to bound the se-
curity.

In the following, we describe a single iteration of sub-
protocols ΓQKD and ΓCHSH, i.e., the ith iteration. For
sub-protocol ΓQKD we adopt asymmetric encoding, that
is, Alice selects a measurement setting ai ∈ {X,Z} with
probabilities px and 1−px, respectively, measures one half
of the bipartite state with it and stores the measurement
output in yi. The other half of the bipartite system is
sent to Charlie via a quantum channel. For sub-protocol
ΓCHSH, Alice measures the bipartite state using measure-
ment settings chosen uniformly at random—she chooses
two bit values ui, vi uniformly at random, where ui = 0,
ui = 1, vi = 0 and vi = 1 correspond to measurement
settings X, Z, U and V. Then, the outputs of X,Z and
U,V are recorded in si and ti, respectively.

Protocol definition

1. State preparation and distribution. Alice
selects a sub-protocol hi ∈ {ΓQKD,ΓCHSH} where
ΓQKD is selected with probability 1 − ps and ΓCHSH

with probability ps. The measurement settings and
outputs for ΓQKD and ΓCHSH are recorded in ai, yi

1 Such a relation has also been obtained independently with a dif-
ferent proof technique (see Ref [7])
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and ui, vi, si, ti, respectively. Likewise, Bob records
his choice of sub-protocol in h′i and his measurement
settings and outputs for sub-protocols ΓQKD and ΓCHSH

in bi, y
′
i and u′i, v

′
i, s
′
i, t
′
i, respectively.

2. Quantum exchange. The Charlie receives quan-
tum states from Alice and Bob, makes a quantum
measurement which supposedly produces entanglement
between Alice and Bob.

3. Sifting. Alice and Bob announce their sub-protocol
and basis choices {hi}i, {h′i}i, {ai}i, {bi}i over an au-
thenticated classical channel and identify four sets,

1. Key generation, X := {i : (hi = h′i = ΓQKD)∧(ai =
bi = X) ∧ (fi = pass)}

2. Error rate estimation, Z := {i : (hi = h′i =
ΓQKD) ∧ (ai = bi = Z) ∧ (fi = pass)}

3. Alice and Bob CHSH test sets, J := {i : hi =
ΓCHSH} and J ′ := {i : h′i = B}, respectively.

The protocol repeats steps (1)-(3) as long as |X | < mx

or |Z| < mz or |J | < j or |J ′| < j, where mx,mz, j ∈ N1.
We refer to these conditions as the sifting condition.

4. Parameter estimation. To compute the av-
erage CHSH value from J , Alice uses the following
formula, Stest := 8

∑
i∈J f(ui, vi|si, ti)/|J | − 4, where

f(ui, vi|si, ti) = 1 if si ⊕ ti = ui ∧ vi, otherwise
f(ui, vi|si, ti) = 0. Similarly, Bob uses the same formula
and arrives at S′test. Next, both Alice and Bob publicly
announce the corresponding bit strings {yi}i∈Z , {y′i}i∈Z
and compute the average error rate Qtest :=

∑
i∈Z yi ⊕

y′i/|Z|. If max{Stest, S
′
test} < Stol or Qtol < Qtest, they

abort the protocol.

5. One-way classical post-processing. Alice and
Bob choose a random subset of size mx of X for clas-
sical post-processing, and we let X and X ′ be random
variables that taking the values from the corresponding
strings {yi}i and {y′i}i. Then, an information reconcili-
ation scheme is applied, revealing at most leakIR-bits of
information. Finally, Alice and Bob apply privacy am-
plification to their bit strings to obtain a secret key of
length `.

Simulation results

For the simulation, we assume that the quantum chan-
nel is given by a depolarizing channel with channel error
rate Qtol.

From Figure 3, we observe that significant secret key
rates are obtained from classical post-processing block
size in the order 105 bits.

FIG. 3. Secret key rate as a function of classical
post-processing block size. For a fixed channel error
rate of Qtol = 1.5%, we plot the secret key rate for Stol ∈
{2.825, 2.800, 2.775, 2.750} from left to right. Note that in
practice, Stol depends only on quality of the source and the
measurements, and is independent of the channel loss. In fact,
CHSH value of around 2.81 was reported [? ]
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