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Relativistic Cryptography: A Brief Partial History (from a personal perspective)

Classical Secure Coin Tossing in Minkowski Space: coin tossing is strictly weaker than bit
commitment (AK 1998)

Classical Bit Commitment Schemes in Minkowski Space: secure against classical attacks and
Mayers-Lo-Chau quantum attacks (AK 1999, 2005)

Unconditionally Secure Quantum Key Distribution Based on No-Signalling (Barrett-Hardy-AK
2005; with only 2 devices Barrett-Colbeck-AK 2012)

-> other protocols for Device-Independent Quantum Key Distribution (Acin, Gisin, Masanes,
Scarani, Brunner, Massar, Pironio, Pino, Hanggi, Renner, Wolf, ....)

Quantum Tagging (Quantum Position Authentication in Minkowski Space)(Malaney,Buhrman-
Chandran-Fehr-Gelles-Goyal-Ostrovsky-Schaffner, AK-Munro-Spiller 2006-11)

Position-Based Quantum Cryptography ( Buhrman et al. 2010-11)

Unconditionally Secure Quantum Bit Commitment With Flying Qudits (AK 2011)
Unconditionally Secure Quantum Bit Commitment By Transmitting Measurement Outcomes
(AK 2011)

Secure and Robust Transmission and Verification of Unknown Quantum States in Minkowski
Space (AK-Massar-Silman 2012)
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(Figs from: Quantum Tasks in Minkowski Space, AK arxiv:1204.4022,
to appear in Classical and Quantum Gravity)
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FIG. 1: An illustration of a relativistic quantum task in 141 dimensions with no restrictions on the location of Alice's agents or
their signalling, beyond those implied by Minkowski causality. Alice receives inputs Ii,..., Im at points Py, ..., Pm. Following
a prearranged protocol, she is required to calculate output points Q1, ..., Qn and produce the output data Jy,. .., Ju there.



FIG. 9 An illustration of a relativistic quantum task in 1+ 1 dimensions with restrictions on the location of Alice's agents.
Alice receives nputs Iy,..., I, at points Py, ..., P,,. Following a prearranged protocol, she is required to caleulate output
points Qq,..., ()., and produce the output data Jy,..., J,, there. Her agents may be located anywhere in space-time except for

the darkened regions.

( from: Quantum Tasks in Minkowski Space, AK arxiv:1204.4022)



Bit commitment:

Alice wants to make an encrypted prediction, bit by bit.

She needs a guarantee that the recipient, Bob, cannot decrypt her prediction
until she gives him the key -- extra data.

He needs a guarantee that she is genuinely committed and cannot change her
prediction, for instance by having two different keys that will reveal two different predictions.

They both ideally want these guarantees to be based only on the laws of physics.
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Defining bit commitment in Minkowski space

B _ Notice that even simple
1unvei|3 b l unveils b classical bit commitment
( Q, protocols can appear
superficially secure.

If Alice's agents at Q1 and Q2
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sends Classic;\ / sends have no correlated information
bit b securely / Cclassical other than b, they cannot
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FIG. 7: A classical relativistic bit commitment protocol in 1 + 1 dimensions represented in our framework. Alice learns the
bit b at point P;. She is required to send the encrypted bit to her agents at @y and (s, points lightlike separated from P in
different directions. Her agents decrypt the bit and give it to Bob’s agents at ¢} and J». Note that while this protocol does
indeed allow Bob to infer some constraints on Alice’s acquisition of b, it does not guarantee to Bob that she was committed by
the point Pi.

( from: Quantum Tasks in Minkowski Space, AK arxiv:1204.4022)



b is unveiled at Q1 and
/// Q2 - but Alice neither
1 & knew it nor was committed

at P1.

Alice obtains the bit b
only at two sites in the
future light cone of P1
(perhaps via
computations or

from natural events) 1 5
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FIG. 8: Defeating the classical relativistic bit commitment protocol described in Figure 7. Alice learns the bit b independently
at points Ot and Q4. She sends the bit to her agents at y and (Ja, who give it to Bob's agents at @y and (Ja. Alice’s unveiling
1s apparently valid, but she did not have the bit b available at the point Py, and so clearly was not committed there.

( from: Quantum Tasks in Minkowski Space, AK arxiv:1204.4022)



What we need -- which the bit commitment protocols | will describe
provably provide -- is security defined appropriately for Minkowski space
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That is, in these tasks, Alice's valid unveiling of b at Q1, Q2 guarantees
that she already had committed herself at P. Her optimal unveiling
probabilities for 0 and 1 obeykp0+p1 < 1+ and later arriving data cannot



To decrypt O, Alice
returns “Jf’somewhere

on this ray
QO \

To commit O, Alice.""-....
sends’¥ at light speed ™

securely“along this ray

*secure fibre, teleportation, ...
cf AK-Massar-Silman 1208.0745
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To decrypt 1, Alice
returns -somewhere
on this ray

Q1
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To commit 1, Alice
-~ sendsV at light speed

securely along this ray

* Bob gives Alice state [y at P

Unconditionally Secure Bit Commitment with Flying Qudits, AK, New J. Phys. 13 (2011) 113015




Security against Bob: ensured since Alice sends the
state securely (either because she controls a region

around the relevant light rays, or e.g. vkapteleportation)
74

%
Security against Alice: ensured by the no-summoning
theorem -- she cannot return ¥ independently at points
on both light rays.
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More precisely, we can quantify the security in terms of the
dimension d of the space of the unknown state: Alice's
cheating probability is bounded by O(1/d).

Optimal states A can return
given her actions chosen at P
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Any 2 points
on distinct light
rays through P
are spacelike
separated

This works in 3+1 dimensions also -- and now each possible
light like direction can code for a different data value, so the
amount of data committed is bounded only by the precision of
Alice's transmission and Bob's measurement.



No contradiction with the Mayers-Lo-
Chau no-go theorem

Mayers and Lo-Chau's celebrated result shows that unconditionally
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protocols -- but the proof makes some tacit assumptions.

In particular, it assumes that, if there is a unitary map taking a O
commitment to a 1 commitment, known to Alice, she can implement it
physically -- and so cheat by altering her commitments.

In our protocol Alice does know the relevant unitary -- which takes a
qudit going along one light ray to the same qudit going along another.

But this unitary cannot be implemented physically, as it would violate
causality. So the Mayers-Lo-Chau cheating strategy doesn't apply.



Unconditionally secure bit commitment by transmitting
measurement outcomes (AK, arxiv:1108.2879, PRL to appear )

Unconditionally secure bit commitment in Minkowski space can also be
implemented by transmitting measurement outcomes on an unknown
quantum state - i.e. without any need for Alice to transmit quantum states
even over short distances.
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Security discussion (see the two papers already mentioned 1108.2879, 1204.4022
see also Kaniewski-Tomamichael-Hanggi-Wehner 1206.1740, Croke-AK
1208.1458).

Security against Bob: ensured because Alice sends all data securely, e.g. using
one-time pads. In a rather appealingly Zen sense, in this and the previous protocol,
Alice commits herself without actually giving Bob anything at all until she unveils.

revealed only @o f 72° ®,
here . /
N /
N & —+—_ | measurement data sent
h / securely by e.g. one-time pads




Security against Alice: ensured because any nonzero probability p of her being able
to unveil both 0 and 1 implies her being able to report credible measurement
outcomes for each BB84 state in both complementary bases -- and in particular to
identify

the state correctly in its own basis.
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Collective operations on N states give Alice no advantage.

Any collective operation applied to any given list of input states (where the states are
listed in some arbitrary order) defines a PO on the Nth state for each possible set of
guesses on the first N states. No PO can give Alice greater confidence thany( | « 2= )
in the guess on the Nth state. So, whatever the success rate for the first (N-1)
guesses, the N-th guess has success probability bo%r(dedjgy and the
overall success rate is thus bounﬁegb{{_([_w_fg))'\\.



General Quantum Tasks In Minkowski Space

[ %>

s,-/

“ P{ Given inputs in the form of quantum P
states |%;:)and classical data S. at
locations (J; , Where neither the locations
nor the classical or quantum data are
generally known in advance.



General Quantum Tasks In Minkowski Space

¢ ~ S 7 Required to produce outputs in the form of S;l _ =
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General Quantum Tasks In Minkowski Space
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An Interesting Example: Returning an Unknown State
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&% Only one request ¢ﬂ
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Simple solution to this task
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Simple solution to this task
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But what if the

task forbids access
to a region around
(0, t)fort>¢g [4

)

f)

input \) at (o0,0)

This strategy no
longer works:
can't hold | ¢>
at (0,t) awaiting
signal.

And holding (#*>
on either the left
or right of the
excluded region
doesn't work
either:

the output on the
opposite side
would arrive



But what if the = XCLUDED There is nonetheless

task fort_)ids access a simple solution:
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But what if the
task forbids access

to a region around
(O, t)fort> §?
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There is nonetheless
a simple solution:

1) send () to (say) the
point (-L,L).

2) repeatedly "teleport" the
quantum state

back and forth between
(-L,t) and (L,t)

without waiting for the
classical correction data.



But what if the
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There is nonetheless
a simple solution:

1) send (4 to (say) the
point (-L,L).

2) repeatedly "teleport" the
quantum state
back and forth between

regpest~ (-L,t) and (L,t)

without waiting for the
classical correction data.

3) on the side a request
arrives, stop "teleporting”,
wait for classical correction
data, create and return [Zl/>



But what if the
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\’Uf> is effectively
delocalized by the
repeated teleportations.

The task can be
completed as though
[2'> were held in
the excluded zone.

This shows how to break
some quantum tagging
(position authentication)
schemes originally
claimed to be secure.



A Brief History of Quantum Tagging

¢ Independently invented by KMSB (2002, patent 2006), CFGGO (2010)
(who used the name quantum position-verification, and extended to
more general position-based quantum cryptography), Malaney (2009).

e \Various tagging schemes proposed: CFGGO and Malaney schemes
claimed proven secure, but broken by teleportation attacks (KMS 2010).
New schemes proposed by KMS 2010 (security left open) and LL 2010
(security conjectured).

e (Im)possibility of security turns out to depend crucially on subtleties in the
properties assumed for the tag: in particular, whether Eve can read
information from within it. Secure quantum tagging is possible if the tag
can keep secret data shared with Alice (K 2010).

e For tags that cannot hold secrets, a large class of tagging schemes including
KMS 2010 and LL 2010 are provably insecure (BCFGGOS, 2010) -- a beautiful
result that relies on earlier work by Vaidman (2003) on non-local guantum
measurements.



Quantum Tagging References
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FIG. 1: One implementation of secure tagging in two dimensions. Here the key is generated by quantum key expansion
between Ap and T. Ag shares the key with A, and As either via secure communication based on quantum key expansion, or
by transmitting relevant key bits after they have been queried.

Secure Quantum tagging (position authentication in Minkowski space) is possible for any tagged
object that can store a classical key securely. The security follows from the security of QKD and the
impossibility of superluminal signalling. (AK, Phys Rev A 84, 022335 (2010))



Returning to the original problem: we cannot verify that the state lies in
the excluded region using (only) the remote query protocol we tried.
Our operational test for locating a quantum state failed. The location
can't be pinned down by remote requests, even when the timings are
precisely stipulated.

As we've seen, that's a problem for some cryptographic tagging
schemes, but it raises an interesting question -- what constraints are
there on producing an unknown state when requested?

One very simple but, it turns out, useful example of a constraint is
given by the "no-summoning theorem"
(AK, arxiv:1101.4612, to appear in Quantum Information Processing)



An example of a relativistic quantum
impossibility: Summoning a quantum state

Consider two agencies, Alice and Bob, with independent secure networks
and (here we idealise for now) representatives everywhere in space-time.

J—

N.RY

Alice prepares a localised physical state unknown to Bob and gives him it -
at point P.

At some point Q, in the causal future of P, not known in advance by Bob,
Alice summons -- i.e. asks Bob to return -- the state.

AL



An example of a relativistic quantum
impossibility: Summoning a quantum state

Consider two agencies, Alice and Bob, with independent secure networks
and (here we idealise for now) representatives everywhere in space-time.

Alice prepares a localised physical state unknown to Bob and gives him it
at point P.

At some point Q, in the causal future of P, not known in advance by Bob,
Alice summons -- i.e. asks Bob to return -- the state.

In principle, with arbitrarily short delay, Bob can comply if the underlying
theory is quantum mechanics in Galilean space-time, or classical
mechanics in Minkowski space-time.

However, as we will show, given an unknown quantum state in Minkowski
space-time, he cannot comply.



Summoning in classical
theories

Given an unknown classical state at point P in Minkowski
space, Bob can (in principle) measure it precisely, broadcast
the information in all directions, and reconstruct the state at
any point Q in the causal future of P -- and so comply with
Alice's summons.
&




Summoning in non-relativistic
guantum mechanics

Given an unknown quantum state ’Z/at a point P=(xt) in
Galilean space-time, Bob can hold the state at position x, wait
for a summons at Q=(y,t') (where t'>t), instantaneously send a
signal to (x,t') requesting the state, and instantaneously send

the state back to Q, and so comply with the summons.
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No summoning in relativistic guantum theory
Given an unknown quantum state 1 at point P in Minkowski
space-time, Bob cannot precisely identify it or copy it
(because of the no-cloning theorem).
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If he holds it at a possible summoning point Q in the causal
future of P, he cannot send it to another space like separated
possible summoning point Q' (because of the no-
superluminal signalling principle).
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No summoning in relativistic quantum theory

More generally, we can use no-cloning and no-signalling to
prove that whatever strategy he follows, Bob cannot generally
comply with a summons.



No approximate summoning in relativistic quantum theory

e A more realistic version of the task would allow Bob some time (more
precisely, a prescribed space-time region within which) to comply.

allowed response region
request A

¢ Also, realistically, we could allow him margin for errors - ok to return
approximately the same state (i.e. with fidelity close to 1 to the original)

e Under these definitions, summoning is realistically (not just ideally)
possible in non-relativistic quantum mechanics or relativistic classical
mechanics.

e But there are non-trivial bounds on the fidelity of approximate cloning.
Removing our idealizations doesn't affect the main conclusion.
No-approximate-cloning plus no-signalling imply no-approximate-
summoning in relativistic quantum theory.



No-summoning and quantum foundations

¢ The no-summoning theorem follows from the no-cloning theorem
and the no-signalling principle, but not from either alone.

e | ike the no-cloning theorem, it is mathematically elementary.

e But it says something new about the relationship between
guantum theory and relativity: the first (?) example of a simple
information-related task that distinguishes relativistic quantum
theory from non-relativistic gm and relativistic classical physics.

¢ \Whereas Bell's theorem, no-cloning, no-broadcasting, no-
signalling, information causality, ... all apply to non-relativistic gm
as well as to relativistic quantum theory.

e And, on the other hand, the impossibility of instantaneous
measurement of non-localised states holds in classical relativistic
theories as well as in relativistic quantum theory.



Summary

Relativistic quantum cryptography, perhaps once seen as esoteric, is developing into a major
field in its own right.

There are direct applications to bit commitment, quantum tagging (position authentication),
position-based quantum cryptography, location-oblivious quantum data transfer, as well as
secure coin tossing with fixed and user-variable biases.

There are also direct applications of relativistic cryptographic protocols to device-independent
quantum cryptography. Perhaps the prime example is the possibility of secure key
distribution based on the no-signalling principle, whose realization began the ongoing
research programme ultimately aiming at efficient secure device-independent quantum key
distribution.

Future technologies will, | believe, be built using many of these ideas and others awaiting
discovery.

New cryptographic ideas are out there waiting to be discovered, along with new perspectives



