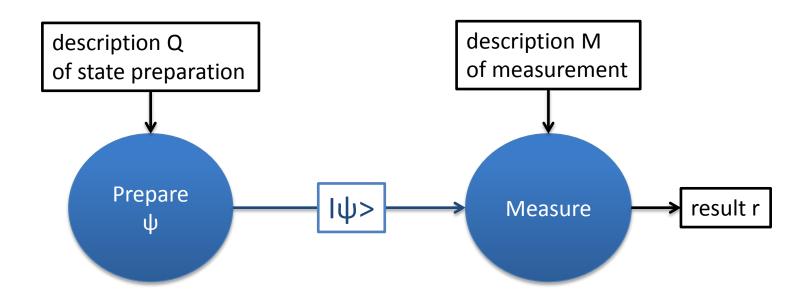
Probing the reality of quantum states

<u>M. Patra</u>, F. Duport, L. Olislager, J. Safioui, S. Pironio, S. Massar

Laboratoire d'Information Quantique, Université Libre de Bruxelles, Bruxelles, Belgique

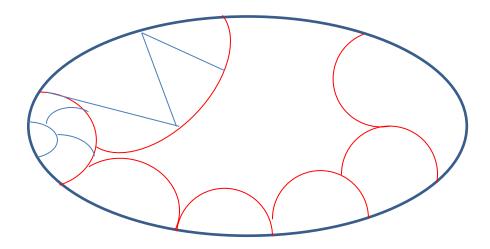
Outline

- The operational view (of physical theories)
- Physics or metaphysics?
 - 1. Quantum mechanics (QM) and hidden variable theories (HVT)
 - 2. Epistemic vs. ontic
 - 3. Previous work
- The main theorem
- The experiment and its interpretation
- Questions for the future


The operational view

- The primitives are 3 procedures: preparation, transformation and measurement.
- Must be specified in "classical language".
- The main problem of any theory is to calculate the transition probabilities: P(r|M,T,Q)
- *M*,*T*,*Q* are measurement, transformation and preparations and *r* is an outcome or effect.
- Quantum theory provides a recipe for calculating these probabilities. Are there any other?

States and effects


- Several preparations may give rise to the same distribution of outputs/results for any measurement (and transformation).
- They are considered equivalent.
- A state is an equivalence class of preparations. A theory partitions the set of preparations into disjoint subsets: the states.

Quantum Theory

$P(rIM,\psi)=Born Rule$

- The quantum state parameterizes an equivalence of preparation.
- So does any other theory of physical processes.
- Example: thermodynamic state vs. microstate.

Operational definition of reality

- We can now define the nature of states in one theory with respect to another.
- Quantum states are real in the more complete "hidden variable" model if its states are completely contained in a quantum state.
- This implies if two preparations can be distinguished by QM then it is also true in the HVT.

- ...at the 1984 Santa Fe Workshop...more than one was heard to say "The experimental evidence now forces us to believe that atoms are not real."
- E. T. Jaynes, Clearing up mysteries

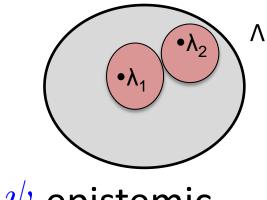
- Let us get real.
- There is set Λ of *ontic states*.
- They are the "real" states of individual system.
- Corresponding to each preparation Q there is a prob. density

 $P(\lambda|Q),\lambda\in\Lambda$

• There is prob. density for the outcomes r of measurement M in the ontic states: $P(r|M, \lambda)$

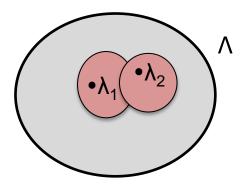
The touchstone

• QM is the only theory of microsystems (and larger) that we have. So we can test.


 $\int_{\Lambda} P(r|M,\lambda) P(\lambda|Q) d\lambda = P(r|M,\psi_Q)$

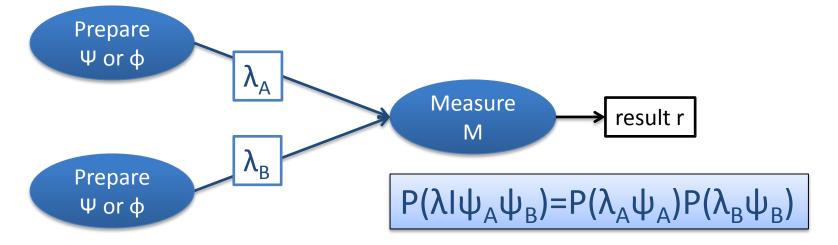
Or the discrete version

 $\sum P(r|M,\lambda)P(\lambda|Q) = P(r|M,\psi_Q)$


ψ -ontic vs. ψ -epistemic

• ψ -ontic (real!)

$$\forall Q_1, Q_2 \quad P(\lambda | Q_1) P(\lambda | Q_2) = 0 \text{ for } \psi_{Q_1} \neq \psi_{Q_2}$$


• ψ -epistemic

 $\exists Q_1, Q_2 \quad P(\lambda | Q_1) P(\lambda | Q_2) > 0 \text{ for } \psi_{Q_1} \neq \psi_{Q_2}$

Ψ-Epistemic Models : Prior Work

- Einstein, Bell, Kochen and Specker, Spekkens....
- In any finite dimension d, there exist non trivial ψepistemic models (LBJR12)
- Assuming <u>preparation independence</u>, Epistemic models are incompatible with quantum mechanics (PBR12)

See ColbeckRenner11&12, Hardy12 for other no go theorems.

Continuous epistemic models (Informal)

• Continuity Assumption:

For fixed λ , P(λ I ψ) depends continuously on ψ (except perhaps at some isolated points)

- Not true for ψ -ontic models
- Natural for ψ -epsitemic models

 Continuous ψ-epistemic models are incompatible with quantum theory

Continuous epistemic models

CONTINUITY ASSUMPTION

- Fix ψ
- For all Φ such that $|\langle \Phi | \Psi \rangle|^2 \ge 1-\delta$

There exists λ such that P(λ I Prepare Ψ)>0 and P(λ I Prepare Φ)>0

NO GO THEOREM

- Fix dimension d
- Continuity assumption incompatible with quantum mechanics if $\delta \ge 1/(d-1)$

Continuity Assumption:

- Fix ψ
- For all Φ such that $|\langle \Phi | \Psi \rangle| \ge 1-\delta$ There exists λ such that $P(\lambda | Prepare \Phi) > 0$ NO GO THEOREM
- Fix dimension d
- Continuity assumption incompatible with quantum mechanics if $\delta \ge 1/(d-1)$

PROOF:

• Consider quantum states

$$\Psi_k = \frac{\sum_{j \neq k} |j|}{\sqrt{d-1}}$$

- all Ψ_k at distance 1/(d-1) from each other
- Measure in Computational Basis:
- Continuous Epistemic Models:
 - By continuity there exists λ such that
 - $P(\lambda | \Psi_k) > 0$ for all k
 - Definition: $\omega(\lambda) = \min_k P(\lambda | \Psi_k)$

➔ Contradiction:

 $0 = \Sigma_k \mathsf{P}(\mathsf{k} \mathsf{I} \Psi_k) = \Sigma_k \Sigma_\lambda \mathsf{P}(\mathsf{k} \mathsf{I} \lambda) \; \mathsf{P}(\lambda \mathsf{I} \Psi_k) \geq \Sigma_\lambda \Sigma_k \mathsf{P}(\mathsf{k} \mathsf{I} \lambda) \omega(\lambda) = \Sigma_\lambda \omega(\lambda) > 0$

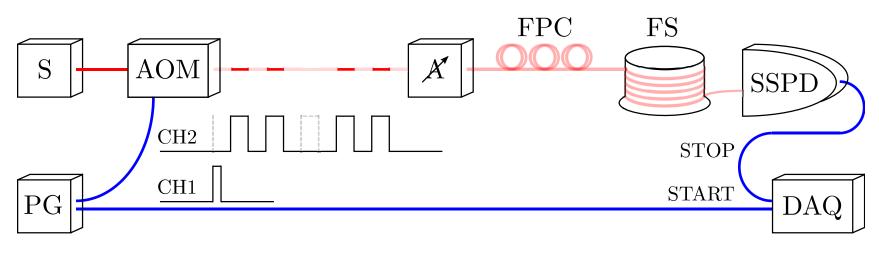
 $P(k|\Psi_k)=0$ for all k

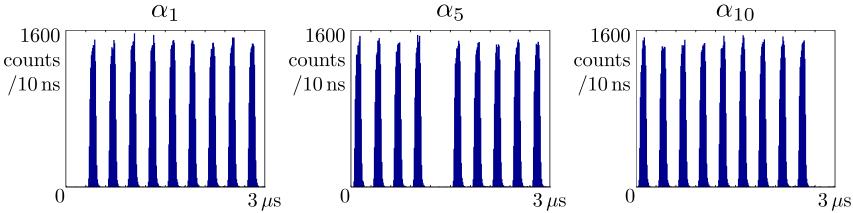
Overcoming the dimension bound

From single systems to composite. Ontic state is a function of (λ_1, λ_2)

• Weak separability: If $P(\lambda_1|\psi_{Q_1})P(\lambda_2|\psi_{Q_2}) > 0$ then

 $P(\lambda_1, \lambda_2 | \psi_{Q_1} \otimes \psi_{Q_2}) > 0$ for independently prepared systems.

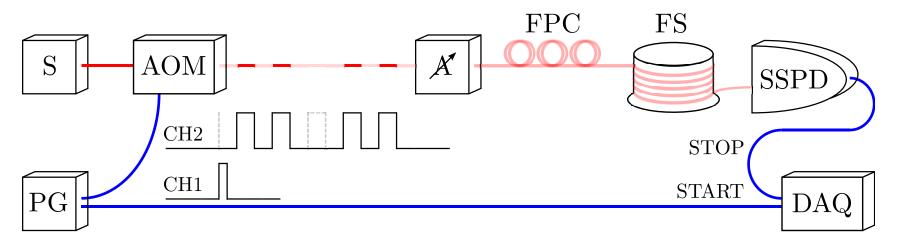

No-go theorem: there is no continuous epistemic model that is consistent with quantum theory.


The alternatives

- 1. There are no epistemic HVT.
- 2. Quantum theory is not quite correct.
- 3. One of our assumptions must be discarded.

Experimental Test of Epistemic Models

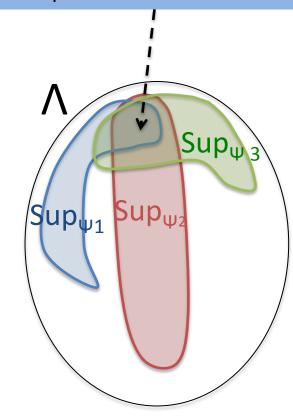
Aim: produce $\Psi_k = \sum_{j \neq k} |j|$ Method: Attenuated coherent states in multiple time bins



Experimental Test of Epistemic Models

Aim: produce $\Psi_k = N \sum_{j \neq k} |j\rangle$

Method: Attenuated coherent states in multiple time bins


Technical specifications:

- S: 1550nm cw laser with coherence time 160µs
- AOM: extinction ratio: 50dB CW & 40dB pulsed. 25ns rise/fall time.
- Pulses: 100ns long separated by 200ns
- # pulses: 3 to 80 (total pulse train duration = 0.9μs to 24μs)
- Mean photon number in pulse train: <n>=0.2
- FS=5km fiber spool
- SSPD: 4% efficiency; 3Hz dark count rate

!!!
Interpretation:
Detection loophole
!!!

Interpretation: Detection Loophole Need « Fair Sampling Assumption »

 Recall: key of no go theorem was existence of common epistemic state λ If this intersection is non empty, then incompatiblity with quantum mechanics

Interpretation: Detection Loophole

- Definitions:
 - $\omega_{Clk}(\lambda) = \min_k P(\lambda I \Psi_k \& Clk)$
 - Continuous Epistemic models with detection efficiency:

 $\omega_{\text{Clk}}(\lambda)$ not identically 0

• Mathematical identity: $\varepsilon_{exp} = \Sigma_k P(k \mid \Psi_k \& Clk)$ $\geq \Sigma_\lambda \omega_{Clk}(\lambda)$

The experiment puts an upper bound on $\Sigma_{\lambda}\omega_{Clk}(\lambda) \le 10^{-3}$

- The main issues are: existence of vacuum and two or more photon states.
- Use a relativized metric and estimate the low probabilities of higher Fock states.
- Use photon number superselection rule.
- Detection efficiency and dark counts.
- Condition everything on the "click" event.
- Use a gedanken alternative.
- Fluctuations in the input coherent state.
- Continuity takes care of this!

The third alternative: how "natural" are our assumptions?

- Continuity: discontinuous models lack aesthetic appeal!?
- We can replace continuity with measurability. $P(\lambda|\psi_Q)$ has support whose probability > 0 (in the quantum state space) with respect to a continuous measure (e.g. Haar measure)

Without this the effect of "epistimicity" will be lost in any system with a bit of continuous noise.

Some questions for the futre

- General HVT with no-signalling constraints.
- Security analysis (of protocols)
- Improved experiments (closing the loopholes, single photons, entangled pairs)
- Epistemic HVTs with some locality assumptions in the presence of noise.
- Power of superbeings with access and control over hidden variable states.
- Are we resigned to the fact hidden variables will stay hidden from us?