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Device-Independent Quantum Information Processing 

Goal: to construct information protocols whose performance is 
independent of the internal working of the devices. 
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No assumption on the devices, which are seen as black-boxes producing a classical 
output given a classical input. It is however assumed that:  
(i) the devices do not communicate during the input-output process 
(ii) this process should be compatible with the laws of Nature / Quantum Physics. 
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Physical Correlations 

1) Classical correlations: correlations established by classical means. 

     


,,),,( ybqxappyxbap 

These are the standard “EPR” correlations. Independently of fundamental 
issues, these are the correlations achievable by classical resources.  Bell 
inequalities define the limits on these correlations. 

Physical principles translate into limits on correlations. 



Physical Correlations 
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2) Quantum correlations: correlations established by quantum means. 
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3) No-signalling correlations: correlations compatible with the no-signalling 
principle, i.e. the impossibility of instantaneous communication. 



Folklore: Quantum physics is random. 
WHY?! 

Randomness in quantum physics 
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These two situations are in principle equivalent. 



In the classical world, there is no such thing as true randomness. Any random 
process is simply a consequence of: 

 1) Imperfections in the preparation of the system and/or 

 2) Partial knowledge 

Example: 

If an observer has perfect 
knowledge of the initial position 
and speed of the ball and the 
size and shape of the roulette, 
the result can be predicted with 
certainty. 

Randomness in classical physics 



Randomness is, thus, a simple consequence of our limitations, for instance 
in our observation and computational capabilities, information storage and 
the preparation of the systems. 

However, the theory does not incorporate any form of randomness. Given 
a perfect knowledge of the initial conditions in a system, it is in principle 
possible to predict its future (and past) behaviour. 

LAPLACE 
We may regard the present state of the universe as the 
effect of its past and the cause of its future. An intellect 
which at a certain moment would know all forces that set 
nature in motion, and all positions of all items of which 
nature is composed, if this intellect were also vast enough 
to submit these data to analysis, it would embrace in a 
single formula the movements of the greatest bodies of the 
universe and those of the tiniest atom; for such an intellect 
nothing would be uncertain and the future just like the past 
would be present before its eyes. 
 

Randomness in classical physics 



The EPR program 

• After all, quantum randomness should have the same explanation as its classical 
counterpart: a consequence of noise or lack of knowledge. 

• The fact that Quantum Physics is able to predict only the probabilities of events reflects 
the incompleteness of the theory. 

• There should be another theory, not necessarily in contradiction with quantum physics, 
containing new variables not appearing in the quantum formalism. The knowledge of 
these, at the moment hidden, variables will make quantum randomness disappear.  

God does not 
play dice! 



Bell inequalities 

In 1964, John Bell proved that theories à la EPR are 
incompatible with the correlations observed between 
entangled quantum particles. These correlations violate 
some conditions, in the form of inequalities, which are 
satisfied by all EPR models. 

From the point of randomness, the experimental 
violation of any Bell inequality implies that a new form of 
randomness, intrinsic and not due to noise or lack of 
knowledge, is available in the quantum world. 

Quantum physics is random because it is non-local. 



Non-locality and randomness 

Do non-local quantum correlations necessarily imply the existence of 
fully unpredictable processes in nature?  

The answer to this question  can be affirmative only if: 
 

• No-signalling is assumed. Otherwise, Bohm’s theory is a 
deterministic, yet signalling, theory that reproduces all quantum 
predictions. 
 

• Some initial form of randomness is also assumed. If the choice of 
measurements in a Bell test is known in advance, it is possible to 
reproduce any Bell violation with a deterministic model. 



Non-locality and randomness 

Putting all these things together, the strongest possible result one 
can hope for relating randomness and quantum non-locality is: 

Assuming the validity of the no-signalling principle and given an initial 
source of imperfect randomness, which can be arbitrarily small but 
non-zero, do non-local quantum correlations imply the existence of 
completely random processes in nature? 
 
Yes! R. Gallego et al., to be submitted. 
 
We are left with a binary choice concerning randomness: 
either our world is super-deterministic, in the sense that all actions, 
including the choice of measurements by different observers, have 
been pre-programmed, or there are provable completely 
unpredictable processes in nature. 



Randomness amplification 

Information task that aims at producing arbitrarily pure random bits from a source 
of imperfect random bits. 
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Santha-Vazirani (SV) source: 

Randomness amplification: obtain a new SV source with 𝜀′ → 0 by using the initial 
source with 𝜀 > 0. Efficiency issues are irrelevant. 
 
Santha&Vazirani: randomness amplification is impossible classically. 
Our work: full randomness amplification is possible using quantum non-locality. 



Randomness amplification 

Randomness amplification using quantum non-locality has first been considered by 
Colbeck and Renner (Nature Phys. 2012). 
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Full amplification 

No amplification 
using the chained 
inequalities in the 
same limit. 



Randomness amplification 

• It is convenient to adopt a cryptographic perspective and assume 
that the devices used for the Bell test have been prepared by an 
adversary using any non-signalling resource, that can even be 
supra-quantum.  
 

• In the preparation the adversary has also access to all pre-existing 
variables.  
 

• Full randomness amplification is equivalent to proving that the 
adversary predictability on the final bits can be made arbitrarily 
small. 



GHZ correlations 

There exist quantum correlations that attain the maximal non-signalling violation 
of a Bell inequality. These correlations are known as GHZ. 

GHZ correlations, that is correlations with no local part, are necessary for full 
randomness amplification.  



GHZ correlations 

GHZ correlations however are not sufficient. Example: 3-party Mermin Bell inequality. 

a=+1,-1 

x=1,2 

b=+1,-1 

y=1,2 

c=+1,-1 

z=1,2 

𝐴1𝐵1𝐶2 + 𝐴1𝐵2𝐶1+ 𝐴2𝐵1𝐶1- 𝐴2𝐵2𝐶2 ≤ 2 

An eavesdropper can fix any function of the outputs using non-signalling correlations 
that attain 4 in the previous Bell expression. 



GHZ correlations 

This result fails for larger number of parties. Example: 5-party Mermin Bell inequality. 

An eavesdropper can predict the majority function of three of the outputs with 
probability not larger than 3/4. This implies that it is possible to get 𝜀′ = 1/4 from 
any SV source using the 5-party Mermin inequality. 

majority 



Final protocol 

The final protocol builds on this 5-party Bell test. By taking many instances of this 
Bell test we manage to: 
(i) Show how 𝜀′ can be made arbitrarily small. We apply techniques introduced by 

Masanes for privacy amplification (PRL’11). 
(ii) Include an estimation part that verifies the devices. We apply techniques 

introduced by Barrett, Hardy and Kent (PRL’05). 



Quantum randomness 

From the point of randomness, the experimental violation of any 
Bell inequality implies that a new form of randomness, intrinsic 
and not due to noise or lack of knowledge, is available in the 
quantum world. 

How can we exploit this new form 
of randomness? 

Beyond fundamental issues, randomness is an extremely valuable 
resource in our society with plenty of applications. 



Randomness vs quantum non-locality 

We want to explore the relation between non-locality, measured by the 

violation β of a Bell inequality, and local randomness, quantified by the 
parameter                                    . Clearly, if β =0 → r=1.  xapr xa,max
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Randomness vs quantum non-locality 
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These bounds can be applied for Device-Independent 
 
*) Randomness Generation (expansion), S. Pironio et al., Nature 2010. 
 

 
*) Quantum Key Distribution, Masanes, Pironio, Acin, Nature Comms 2011. 



Randomness vs quantum non-locality 

All the region 
above the curve is 
impossible within 
Quantum 
Mechanics. 

One pure 
random bit. 

At the point of maximal violation the two outcomes define 1.23 bits of randomness. 

We can solve the previous optimization problem using the hierarchy of SDP 
conditions to bound quantum correlations of Navascues, Pironio, Acin, PRL 2007. 



Maximal randomness in Bell tests 

CHSH = 𝐴1𝐵1 + 𝐴1𝐵2 + 𝐴2𝐵1 - 𝐴2𝐵2  

At the point of maximal quantum violation, all local outcomes are random: 
𝐴1 = 𝐴2 = 𝐵1 = 𝐵2 =0. 

𝐼𝛽 = 𝐴1𝐵1 + 𝐴1𝐵2 + 𝐴2𝐵1 - 𝐴2𝐵2 + β 𝐴1  

At the point of maximal quantum violation, only the output of the second 
measurement by Alice is random: 𝐴2 = 0, Acin, Massar, Pironio, PRL 2012. 

Why? When do Bell tests certify maximal randomness? 



Simple argument 

Assumption: the correlations attaining the maximal quantum violation are unique. 

Bell inequality 

Q 



Simple argument 

Consider some quantum correlations attaining the maximum violation of the 
CHSH inequality 𝑃1. These correlations are equivalently defined by  the value 
of all the correlators:  
 

𝐴1 , 𝐴2 , 𝐵1 , 𝐵2 , 𝐴1𝐵1 , 𝐴1𝐵2 , 𝐴2𝐵1 , 𝐵1𝐵2  

Consider the map: 𝐴𝑖 → −𝐴𝑖 and 𝐵𝑖 → −𝐵𝑖. Under this map, the previous 
correlations are mapped into 𝑃2, defined by: 
 

− 𝐴1 , − 𝐴2 , − 𝐵1 , − 𝐵2 , 𝐴1𝐵1 , 𝐴1𝐵2 , 𝐴2𝐵1 , 𝐵1𝐵2  
 
 
Note however that the two-party correlators remain unchanged, and so the 
CHSH  value. But we assume that the correlations maximally violating the 
inequality are unique. Thus:  
              

𝐴1 = 𝐴2 = 𝐵1 = 𝐵2 =0 



Simple argument 

Thus, uniqueness + symmetries → maximal randomness. 

𝐼𝛽 = 𝐴1𝐵1 + 𝐴1𝐵2 + 𝐴2𝐵1 - 𝐴2𝐵2 + β 𝐴2  

Transform 𝐴2 → −𝐴2:  

𝐼𝛽 = 𝐴1𝐵1 + 𝐴1𝐵2 - 𝐴2𝐵1 + 𝐴2𝐵2 + β 𝐴1  

Exchange 𝐵1 ↔ 𝐵2:  

𝐼𝛽 = 𝐴1𝐵2 + 𝐴1𝐵1 - 𝐴2𝐵2 + 𝐴2𝐵1 + β 𝐴1  

The value of the inequality remains unchanged: 𝐴2 =0.  



Certified maximal randomness 

Question: is there any N-party Bell test in which the binary outcomes of some 
measurements define N bits? 
Yes. Joint work with De la Torre, Dhara, Prettico, in preparation.  
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𝑝 𝑎1 = 𝑏1 + 𝑝 𝑏1 = 𝑎2 + 𝑝 𝑎2 = 𝑏2 + 𝑝 𝑏2 = 𝑎3 + 𝑝 𝑎3 = 𝑏3 + 𝑝 𝑏3 ≠ 𝑎1 ≤ 5 

At the point of maximal quantum violation, 𝑎1 and 𝑏2 define two pure random bits. 
This result has been certified by the SDP hierarchy. 



Certified maximal randomness 

• We have examples of N parties, with odd N, generating N random bits. 
 

• We have proven that if general non-signalling correlations become available, it is 
impossible to certified N bits of randomness.  
 

• The maximum amount of randomness that can be certified in a Bell test against 
non-signalling eavesdroppers is bounded by 1/ 2𝑁 − 1 . 
 

• If the theory is maximally non-local, maximal randomness cannot be certified. 
The bounded non-locality of quantum physics allows one to certify maximal 
randomness. 
 

• Quantum physics is random because non-local. Now, it is not maximally non-
local because it is maximally random. 



Randomness amplification 

• Randomness amplification: produce bits of arbitrarily high 
randomness from bits of imperfect randomness. 

• Full randomness amplification is possible using quantum 
non-locality. 

• Assuming non-signalling, either our world is super-
deterministic, in the sense that all actions, including the 
choice of measurements by different observers, have been 
pre-programmed, or there are provable completely 
unpredictable processes in nature. 

• Simpler schemes? Bipartite scenario? 
• How does noise affect these results? 
• Randomness amplification against quantum 

eavesdroppers? 



Randomness and correlations 

• There exist quantum correlations that allow one to certify 
that the measurement results by N parties define N 
random bits. 

• Maximal randomness certification is impossible for general 
non-signalling correlations. 

• What’s the maximal amount of randomness that can be 
certified in a general non-signalling theory? 

• Are there other non-signalling theories, apart from 
quantum physics, that permit maximal randomness 
certification? 



ICFOnest program 

ICFOnest post-doctoral program: it aims at 
providing high-level training and support for 
outstanding international researchers in the 
early stages of their careers.  

Deadline: September 30 2012, last call! 

 

http://nestpostdocs.icfo.es/  

http://nestpostdocs.icfo.es/
http://nestpostdocs.icfo.es/
http://nestpostdocs.icfo.es/
http://nestpostdocs.icfo.es/

