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Given a set of dice, how do you certify 

them? 
  

Sample and check statistics. 
  

What if the dice have memory? 

Or if they are 210000-sided?  

Certifying randomness 

011011010000011… 



Why certify randomness 

• RSA, BB’84,…, crucially rely on private randomness 

 

 

 

 

 

 

 

 

 

 
  

→ Crucial that random bits are unbiased and trusted 

 



011011010000011… 

1. You provide specifications for the inner workings of the device. 

2. No guarantee that the specifications were followed. 

3. You use the box only once.  

4. Provide test for output’s randomness: 

 if the box was manufactured according to specification, the 

output must pass the test with very high probability. 

 if any box passes the test, its output is close to uniformly random. 

 

Goal: a certifiable source of randomness 

0110… 

statistically close to uniform 



011011010000011… 

Two inevitable assumptions: 

1. Test requires use of (a small amount of) initial randomness 

2. Need physical assumption on device 

• Device could be pre-programmed to choose next output bit to 

deterministically maximize expected success  

→ Need a way to prevent device from deterministically deciding 

“best next bit to output” (in expectation over test’s randomness) 

 

Goal: a certifiable source of randomness 

0110… 



011011010000011… 0110… 

Goal: a certifiable source of randomness 

Physical assumption:  

 The device is made of two non-communicating parts 
  

• Randomness certification based on Bell inequality violation 

• First suggested by Colbeck (Ph.D. thesis ’09) 

• [PAM+,Nature’10] gave rigorous analysis (+experimental results!) 

→ Protocol uses 𝑛 random bits, generates 𝑛 near-uniform bits 
  

•  We give more efficient protocol  

+ randomness certified against quantum side information 



A randomness expansion protocol 

• Inputs divided into blocks of 𝑂(log 𝑛 + log⁡(1/𝜖⁡)) identical inputs 

• [dummy blocks]: Most blocks use input (0,0) 

• [check blocks]:⁡polylog(𝑛/𝜖)⁡blocks use randomly chosen inputs  

• Repeat poly(𝑛/𝜖)⁡times 
  

• Test: (variant of chained ineq.) 

– dummy blocks: 

all outputs satisfy 𝑎𝑖 = 𝑏𝑖  

– check blocks: correlations are within 5% of predictions of QM 

 

 

Al   (input x) 0000 – 0000 – 1111 – 0000 – 0000 – 0000 – 1111 – 0000 – 0000   

     (output a) 0111 – 1101 – 0100 – 0111 – 1101 – 0010 – 1011 – 1011 – 1100  
  

B    (input y) 0000 – 0000 – 0000 – 0000 – 0000 – 0000 – 1111 – 0000 – 0000  

     (output b) 0111 – 1101 – 0010 – 0111 – 1101 – 0010 – 0101 – 1011 – 1100  

a=0 

a=1 

a=0 

Input 0 

Input 1 

b=1 

b=0 b=1 

b=0 
a=1 

Bob 
Alice 

𝑛⁡= target #random bits 

𝜖 = security parameter 



• Goal: generate bits 𝜖-close to perfectly uniform 

• Min-entropy 𝐻∞ 𝑋 = −log Pr most⁡likely⁡event  

 

 

 

  

• Smooth min-entropy 𝐻∞
𝜖 𝑋  

    → Number of bits of 𝜖-near-uniform randomness that can be extracted 

• Quantum conditional min-entropy [R’05] 

– 𝐻∞ 𝑋 𝐸 = − log𝑃𝑔𝑢𝑒𝑠𝑠 𝑋 𝐸 ⁡ [KRS’09] (𝑋=classical, 𝐸=quantum) 

– 𝐻∞
𝜖 𝑋 𝐸 :⁡max. nb. of 𝜖-near-uniform (to any adversary holding E) bits 

that can be extracted from X 

An aside: measuring randomness 

𝑥 

2−𝐻∞(𝑥) 

𝑥 
2𝐻∞

𝜖 (𝑥) 

Ext 
2−𝐻∞

𝜖 (𝑥) 𝜖 



  

• Recall parameters:⁡𝑚 = 𝑝𝑜𝑙𝑦(𝑛/𝜖)⁡rounds of interaction,  

𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛, 1/𝜖)⁡bits of randomness to select inputs 

→ Exponential expansion for 𝜖⁡ = ⁡1/𝑝𝑜𝑙𝑦(𝑛) 
  

• [FGS’12,PM’12] also obtain exponential expansion, based on [PAM+10] 

(Use two pairs of devices, assume no entanglement between the pairs) 
  

• Lower bound on 𝐻∞
𝜖 𝐵 𝐸  implies protocol is composable   

 The certification theorem: Suppose that 

1. The initial randomness is perfectly uniform 

2. The devices did not communicate throughout 

3. The experimenter’s test passes 

4. Quantum mechanics is correct 

Then: 𝐻∞
𝜖 𝐵 𝐸 ≥ 𝑛 (for any quantum 𝐸) 

Results 𝑛⁡= target #random bits 

𝜖 = security parameter 



    

• Suppose Bob’s outputs are random, but… 

…Eve has a measurement on her system that produces identical outcomes! 

• Ex: ABE share⁡𝑚⁡copies of Ψ𝐺𝐻𝑍 =
1

2
(|000〉 + |111〉) 

Most of Bob’s inputs are “0”: Eve can bet on his measurement being 𝐵0 

→ B,E get same outcome whenever 𝑌𝑖 = 0 

• Catch: trace out Eve ⇒⁡A,B⁡in⁡separable⁡state! 

• Monogamy:⁡high⁡correlation⁡b/w⁡B,E⁡⇒⁡no⁡entanglement⁡b/w⁡A,B⁡ 

𝐵𝑖 ⁡⁡⁡⁡⁡= ⁡⁡⁡⁡⁡⁡⁡ 𝐶𝑖  ? 

Quantum adversaries 



Proof strategy 

Suppose (1),(2),(3),(4) hold, but 𝐻∞
𝜖 𝐵1 ⋯𝐵𝑚 𝐸 ≪ 𝑛  

1. Easy case: ∃𝑖, 𝐻∞
𝜖 𝐵𝑖 𝐸 ≪ 𝑛/𝑚 ≪ 1 

– Derive contradiction with no-signaling condition in 𝑖-th block 

2. General case: 𝐻∞
𝜖 𝐵 𝐸 ≪ 𝑛  

– Exploit assumption using “quantum reconstruction paradigm” 

– Enables reduction to easy case: identify “good 𝑖” such that Eve can 

predict 𝐵𝑖 

 The certification theorem: Suppose that 

1. The initial randomness was perfectly uniform 

2. The devices did not communicate 

3. Quantum mechanics is correct 

4. The experimenter’s test passes 

     Then: 𝐻∞
𝜖 𝐵 𝐸 ≥ 𝑛 (for any quantum 𝐸) 



    

• Can always measure Eve first → her prediction acts as “anchor” for Bi⁡ 
Most of the time, block 𝑖 is a dummy block: 𝑌𝑖 ⁡= 0. 

→ on input 𝑌𝑖 = 0, Bob is almost deterministic 
  

• Small chance that block 𝑖 is a check block: 

Can Alice, Bob satisfy CHSH constraints if Bob’s output on input 0 is fixed? 
  

• Determinism incompatible with Bell inequality violation 

[PAM+10] gave quantitative argument for general Bell inequalities 

→ We give direct intuitive argument based on “guessing game” 

𝐵𝑖 ⁡⁡⁡⁡⁡= ⁡⁡⁡⁡⁡⁡⁡ 𝐶𝑖  ? 

Easy case: ∃𝑖 ∈ 𝑚 , 𝑝𝑔𝑢𝑒𝑠𝑠 𝐵𝑖 𝐸 ≥ 0.99 



Proof strategy 

Suppose (1),(2),(3),(4) hold, but 𝐻∞
𝜖 𝐵 𝐸 ≪ 𝑛  

1. Easy case: ∃𝑖, 𝐻∞
𝜖 𝐵𝑖 𝐸 ≪ 1  

– Derive contradiction with no-signaling condition in 𝑖-th block 

2. General case: 𝐻∞
𝜖 𝐵 𝐸 ≪ 𝑛  

– Exploit assumption through “quantum reconstruction paradigm” 

– Enables reduction to easy case: identify “good 𝑖” such that Eve can 

predict 𝐵𝑖 

 The certification theorem: Suppose that 

1. The initial randomness was perfectly uniform 

2. The devices did not communicate 

3. Quantum mechanics is correct 

4. The experimenter’s test passes 

     Then: 𝐻∞
𝜖 𝐵 𝐸 ≥ 𝑛 (for any quantum 𝐸) 



• Idea 0:⁡𝑝𝑔𝑢𝑒𝑠𝑠 𝐵 𝐸 = 2−𝐻∞(𝐵|𝐸) ≫ 2−𝑛 

→ Eve can guess complete string B, but with very low success 
  

• Idea 1: use smoothed min-entropy 𝐻∞
𝜖 𝐵 𝐸 ≪ 𝑛 

Operational interpretation: Eve can break any 𝑛-bit extractor on B, with 

advantage 𝜖 = 𝑝𝑜𝑙𝑦−1 𝑛 ≫ 2−n 
  

• Idea 2: deduce existence of “improved” Eve: 

Eve can guess 𝐵 ≈ 𝐵 with succ. ≈ 𝜖 (some caveats) 

Based on “quantum reconstruction paradigm” 
  

• Boosted success from 2−𝑛 to 𝜖! 

→ Reduce to easy case: identify “good” block 𝑖 such that Eve can predict 𝐵𝑖 

(need to condition on event of probability ≈ 𝜖, instead of ≈ 2−𝑛) 

General case: 𝐻∞
𝜖 𝐵 𝐸 ≪ 𝑛  



A “quantum reconstruction paradigm” 

Lemma [DVPR’11,VV’12]: Assume 𝐵 ∈ 0,1 𝑚 such that 

𝐻∞
𝜖 𝐵 𝐸 ≪ 𝑛. Then there exists 𝑂(𝑛⁡log⁡(1/𝜖))⁡indices 𝐴 ⊆ [𝑚] 

such that, given 𝐵𝐴, Eve can predict 𝐵 ⁡such⁡that⁡d 𝐵 , 𝐵 ≤ 0.01, 

with success 𝑂(𝑝𝑜𝑙𝑦(𝜖/𝑚)).  

0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 

0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

𝐵: 

𝐵 : 

At most 1%⁡errors,  

with probability ≥ (𝜖/𝑚)4 



A “quantum reconstruction paradigm” 

• Introduced in [Tre’01] to analyze classical extractors 
  

• [DV’11,DVPR’12] Adaptation to quantum setting challenging: 

reconstruction requires repeated measurement of E 
  

• [KT06]: can assume Eve applies specific measurement (PGM) 

→ simultaneously refines all required measurements 

Lemma [DVPR’11,VV’12]: Assume 𝐵 ∈ 0,1 𝑚 such that 

𝐻∞
𝜖 𝐵 𝐸 ≪ 𝑛. Then there exists 𝑂(𝑛⁡log⁡(1/𝜖))⁡indices 𝐴 ⊆ [𝑚] 

such that, given 𝐵𝐴, Eve can predict 𝐵 ⁡such⁡that⁡d 𝐵 , 𝐵 ≤ 0.01, 

with success 𝑂(𝑝𝑜𝑙𝑦(𝜖/𝑚)).  



Proof strategy 

Suppose (1),(2),(3),(4) hold, but 𝐻∞
𝜖 𝐵 𝐸 ≪ 𝑛  

1. Easy case: ∃𝑖, 𝐻∞
𝜖 𝐵𝑖 𝐸 ≪ 1  

– Derive contradiction with no-signaling condition in 𝑖-th block 

2. General case: 𝐻∞
𝜖 𝐵 𝐸 ≪ 𝑛  

– Exploit assumption through “quantum reconstruction paradigm” 

– Enables reduction to easy case: identify “good 𝑖” such that Eve can 

predict 𝐵𝑖 

 The certification theorem: Suppose that 

1. The initial randomness was perfectly uniform 

2. The devices did not communicate 

3. Quantum mechanics is correct 

4. The experimenter’s test passes 

     Then: 𝐻∞
𝜖 𝐵 𝐸 ≥ 𝑛 (for any quantum 𝐸) 



Questions 

• How much can we sell this for?  



• Applications? Implementations? 

– Can the protocol be made robust to noise? 

To imperfections in the initial randomness?  

– Improve efficiency 

 

• What is the maximum stretch? 

– Doubly exponential expansion? 

– Unbounded expansion? 

 

• Other models/assumptions 

– “Free will amplification” [Colbeck-Renner’11] 

– Certified randomness generation under other assumptions 

 

 

Questions 



Stop telling God what to do with his dice. 
         Niels Bohr 

God does not play dice with the Universe.  
     Albert Einstein 


