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THATS THE
PROBLEM
WITH RAN-
DOMNESS:
YOU CAN
NEVER BE
SURE.




Certifying randomness

Given a set of dice, how do you certify
- them?

Sample and check statistics.

What if the dice have memory?
Or if they are 21000-gjded?

011011010000011...




Why certify randomness
RSA, BB’84,..., crucially rely on private randomness

CNET * News InSecurity Complex

Researchers find flaw in key
generation with popular

cryptography

r Elinor Mills | February 14, 2012 1:42 PM PST
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Small percentage of public keys in sample found online were not randomly
generated as they should be, paper says.
A group of researchers has uncovered a flaw in the way

public keys are generated using the RSA algorithm for
encrypting sensitive online communications and transactions.

They found that a small fraction of public keys-—-27 000 out of
a sample of about 7 million--had not been randomly
generated as they should be. This means it would be
possible for someone to figure out the secret prime numbers
which were used to create the public key, according to The
New York Times, which reported on the research today.

— Crucial that random bits are unbiased and trusted




Goal: a certifiable source of randomness

0110...—> 311011010000015...

statistically close to uniform

1. You provide specifications for the inner workings of the device.
2. No guarantee that the specifications were followed.

3. You use the box only once.

4. Provide test for output’s randomness:

v if the box was manufactured according to specification, the

output must pass the test with very high probability.
v" if any box passes the test, its output is close to uniformly random.



Goal: a certifiable source of randomness
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Two Inevitable assumptions:

1. Test requires use of (a small amount of) initial randomness

2. Need physical assumption on device

* Device could be pre-programmed to choose next output bit to
deterministically maximize expected success



Goal: a certifiable source of randomness
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Physical assumption:
The device Is made of two non-communicating parts

« Randomness certification based on Bell inequality violation

» First suggested by Colbeck (Ph.D. thesis *09)
« [PAM+ Nature’10] gave rigorous analysis (+experimental results!)
— Protocol uses /n random bits, generates n near-uniform bits

We give more efficient protocol
+ randomness certified against guantum side information



A randomness expansion protoco| n =target #random bits

€ = Security parameter
> (input X)
(4
“#> (output a)

% (inputy)
(output b)

 Inputs divided into blocks of O(logn + log(1/¢)) identical inputs

[dummy blocks]: Most blocks use input (0,0)

[check blocks]: polylog(n/e) blocks use randomly chosen inputs

Repeat poly(n/e) times

Test: (variant of chained ineq.)

— dummy blocks:

all outputs satisfy a; = b;

— check blocks: correlations are within 5% of predictions of QM



An aside: measuring randomness

Goal: generate bits e-close to perfectly uniform

Min-entropy Ho,(X) = —log(Pr(most likely event))

e |

€ : )
ZHoo(x)
Smooth min-entropy HS, (X)
— Number of bits of e-near-uniform randomness that can be extracted
Quantum conditional min-entropy [R’05]
— Ho(X|E) = —log Py ess (X|E) [KRS’09] (X=classical, E=quantum)

— HS (X|E): max. nb. of e-near-uniform (to any adversary holding E) bits
that can be extracted from X

X



Results n = target #random bits
€ = Security parameter

The certification theorem: Suppose that
1. The initial randomness is perfectly uniform
2. The devices did not communicate throughout
3. The experimenter’s test passes
4, Quantum mechanics Is correct

Then: HS (B|E) = n (for any quantum E)

* Recall parameters: m = poly(n/e) rounds of interaction,
polylog(n, 1/€) bits of randomness to select inputs
— Exponential expansion for e = 1/poly(n)

« [FGS’12,PM’12] also obtain exponential expansion, based on [PAM+10]
(Use two pairs of devices, assume no entanglement between the pairs)

« Lower bound on HS (B|E) implies protocol is composable



Quantum adversaries

Suppose Bob’s outputs are random, but...

...Eve has a measurement on her system that produces identical outcomes!

Ex: ABE share m copies of |W;y,) = |000) + |111))

1
7 (
Most of Bob’s inputs are “0”: Eve can bet on his measurement being B,
— B,E get same outcome whenever ¥; = 0

Catch: trace out Eve = A,B in separable state!

Monogamy: high correlation b/w B,E = no entanglement b/w A,B



Proof strategy

The certification theorem: Suppose that
1. The initial randomness was perfectly uniform
2. The devices did not communicate
3. Quantum mechanics is correct

4. The experimenter’s test passes

Then: HS (B|E) = n (for any quantum E)

Suppose (1),(2),(3),(4) hold, but H, (B, - B,,|E) < n

1. Easycase: 3i, HS,(B;|E) <K n/m < 1
— Derive contradiction with no-signaling condition in i-th block

2. General case: HS,(B|E) < n

— Exploit assumption using “quantum reconstruction paradigm”

— Enables reduction to easy case: 1dentify “good i” such that Eve can
predict B;



Can always measure Eve first — her prediction acts as “anchor” for B
Most of the time, block i is a dummy block: Y; = 0.
— on Input ¥; = 0, Bob is almost deterministic

Small chance that block i is a check block:
Can Alice, Bob satisfy CHSH constraints if Bob’s output on input O is fixed?

Determinism incompatible with Bell inequality violation
[PAM+10] gave quantitative argument for general Bell inequalities
— We give direct intuitive argument based on “guessing game”
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Proof strategy

The certification theorem: Suppose that
1. The initial randomness was perfectly uniform
2. The devices did not communicate
3. Quantum mechanics is correct

4. The experimenter’s test passes

Then: HS (B|E) = n (for any quantum E)

Suppose (1),(2),(3),(4) hold, but HS (B|E) < n

1. Easycase: 3i,HS,(B;|E) < 1 /
— Derive contradiction with no-signaling condition in i-th block

(2. General case: HS(BIE) K n A

— Exploit assumption through “quantum reconstruction paradigm”

— Enables reduction to easy case: 1dentify “good i” such that Eve can

\ predict B; )




General case: HS,(B|E) K n

ea B pross By =—2—teblE 55 30

— Eve can guess complete string B, but with very low success

Idea 1: use smoothed min-entropy HE (B|E) <K n
Operational interpretation: Eve can break any n-bit extractor on B, with
advantage € = poly~1(n) >» 27"

ldea 2: deduce existence of “improved” Eve:
Eve can guess B ~ B with succ. = € (some caveats)

Based on “quantum reconstruction paradigm”

Boosted success from 27" to €!
— Reduce to easy case: identify “good” block i such that Eve can predict B;
(need to condition on event of probability = €, instead of = 27")



A “quantum reconstruction paradigm™

Lemma [DVPR’11,VV’12]: Assume B € {0,1}" such that
HS (B|E) «< n. Then there exists O(n log(1/€)) indices A € [m]

such that, given By, Eve can predict B such that d(B, B) < 0.01,
with success O (poly(e/m)).
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A “quantum reconstruction paradigm™

Lemma [DVPR’11,VV’12]: Assume B € {0,1}" such that
HS (B|E) «< n. Then there exists O(n log(1/€)) indices A € [m]

such that, given By, Eve can predict B such that d(B, B) < 0.01,
with success O (poly(e/m)).

Introduced in [Tre’01] to analyze classical extractors

[DV’°11,DVPR’12] Adaptation to quantum setting challenging:

reconstruction requires repeated measurement of E

[KTO6]: can assume Eve applies specific measurement (PGM)

— simultaneously refines all required measurements




Proof strategy

The certification theorem: Suppose that
1. The initial randomness was perfectly uniform
2. The devices did not communicate
3. Quantum mechanics is correct

4. The experimenter’s test passes

Then: HS (B|E) = n (for any quantum E)

Suppose (1),(2),(3),(4) hold, but HS (B|E) < n

1. Easycase: 3i,HS,(B;|E) < 1 /
— Derive contradiction with no-signaling condition in i-th block

2. General case: HS,(B|E) < n

— Exploit assumption through “quantum reconstruction paradigm” l’

— Enables reduction to easy case: identify “good i” such that Ev
predict B;



Questions
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Questions

« Applications? Implementations?

— Can the protocol be made robust to noise?
To imperfections in the initial randomness?

— Improve efficiency

* What is the maximum stretch?
— Doubly exponential expansion?

— Unbounded expansion?

* Other models/assumptions
— “Free will amplification” [Colbeck-Renner’11]

— Certified randomness generation under other assumptions



God does not play dice with the Universe.
Albert Einstein

Stop telling God what to do with his dice.
Niels Bohr



