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Our contribution [2] is twofold. On the one hand, we show that information-theoretic single-server
Quantum Private Information Retrieval requires a linear amount of communication to be secure
against specious adversaries, which are the quantum analog of honest-but-curious adversaries. On
the other hand, we stress the importance of adequate comparison between classical and quantum
adversaries—unfair comparisons might lead to an unjustified advantage for the quantum case.

I. INTRODUCTION

Private Information Retrieval (PIR) is a cryptographic
scheme that allows a client to secretly query a database.
Here, we consider information-theoretic single-server
PIR, which we describe more formally as follows. Let
a server hold an n-bit database. After the query, the
client knows the i-th bit of the database, whereas the
server knows nothing about i (there are no restrictions
on what the client learns from the server beyond the i-th
bit).

In the trivial PIR protocol, the server sends the whole
database to the client. This protocol has a communica-
tion complexity of n bits. The study of PIR is mostly
concerned with minimizing the communication complex-
ity. In particular, one asks for the communication com-
plexity lower bound for any PIR protocol. In 1998,
Chor, Kushilevitz, Goldreich, and Sudan proved that n is
the tight lower bound for single-server and information-
theoretic PIR [4].

The fact that the quantum model, in contrast to the
classical model, helped to improve solutions to cryp-
tographic tasks [3, 8], raised hope to minimize the
lower bound beyond n by using quantum information.
A PIR scheme where quantum information is used is
called Quantum Private Information Retrieval (QPIR).
In 1999, Nayak proved the communication complexity
lower bound for QPIR protocols to be n, as in the clas-
sical case [7]. His proof however, applies only to an un-
restricted adversarial quantum server.

A recent QPIR protocol from 2012 by Le Gall how-
ever achieves a communication complexity in the order
of
√
n [6]. This improvement could only be achieved

because the power of the adversarial quantum server is
restricted to precisely follow the protocol, even to the
extent of discarding information. Our work was mainly
motivated by his result. We asked ourselves: What is the
communication lower bound for QPIR protocols that are
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secure against only the weakest reasonable quantum ad-
versary? To answer this question, one first needs to know
how to model the weakest reasonable quantum adversary.
In classical cryptography this adversary is called honest-
but-curious and is well defined. The quantum analog to
this adversary was defined in 2010 by Dupuis, Nielsen,
and Salvail [5]. The authors named it specious. Our
main contribution is that a QPIR protocol that is secure
against specious adversaries needs at least n bits of com-
munication. This concludes that the improvement in this
recent protocol [6] is only due to an unfair comparison
between the classical and quantum adversary.

This introduction continues with a description of our
contributions and their importance to quantum cryptog-
raphy. After this, we describe the adversarial model in
more detail and compare it to the classical honest-but-
curious model. Then we present the ideas for the lower
bound proof.

A. Contributions and importance to quantum
cryptography

In our work [2] we prove that, even by relaxing the
power of a quantum adversary as much as as possible,
QPIR protocols need at least the same amount of com-
munication as the database size. Hence, the trivial QPIR
protocol, in which the whole database is sent to the
server, is optimal. Furthermore, we stress the importance
of adequate comparison between classical and quantum
adversaries. An unfair comparison, as we think has been
done in a recent work [6], might lead to an unjustified
quantum advantage. Such results leave hopes for further
improvements, which would be illusory only.

In Theorem 1, we formally state our main
result, where the following notions are used.
Let Hbin(p) be the binary entropy defined
as Hbin(p) := −p log(p)− (1− p) log(1− p). We call a
protocol (1−δ)-correct if the output of the protocol does
not deviate more than δ from the intended behavior,
with respect to the trace distance. Furthermore, we
call a protocol (1 − ε)-private against specious servers
if at every step of the protocol, any specious adversary
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does not know more than an ε-portion of the index,
with respect to the trace distance (see full version [2] for
details).

Theorem 1. Let Π be an s-round, n-bit, single-server
QPIR protocol, that is (1− δ)-correct and (1− ε)-private
against specious servers. Then Π has communication
complexity of at least(

1−Hbin

(
1− δ − 2

√
ε(1− ε)

))
n .

This result closes the open questions of information-
theoretic single-server QPIR protocols. Another impact
is that this result makes an example of the importance
on dealing correctly with quantum adversaries. Further-
more, it reminds us that improvements are not guaran-
teed, if we use quantum information instead of classical
information.

II. WEAKEST REASONABLE CLASSICAL AND
QUANTUM ADVERSARIES

In this section, we describe the honest-but-curious ad-
versaries, which are the weakest reasonable classical ad-
versaries. Based on this, we give a first try to formulate
the quantum analog of the honest-but-curious adversaries
and point out the difficulties that arise. After that, we
describe the specious adversaries, which are the weak-
est reasonable quantum adversaries. The specious ad-
versaries are then related to the well known purified ad-
versary. Finally, we analyze Le Gall’s adversarial model.

A. Classical honest-but-curious adversary

In classical cryptography, the weakest reasonable ad-
versary is called honest-but-curious. Its name precisely
describes how such an adversary acts. It is honest, which
means it follows the protocol at every step, but then it
is also curious and remembers every transaction with the
clients. This adversary can be justified as the weakest
reasonable classical adversary. The reason for this is
that, if one tries to restrict a classical adversary as much
as possible, one can say that all transactions are invalid
except the honest one. The honest transaction cannot
be forbidden, because this would impact the correctness
of the protocol. On the other hand, we cannot restrict
the actions of the adversary in his laboratory. Hence,
copying is allowed.

Stated in other words, an adversary is honest-but-
curious, if it passes an imaginary audit at the end of
the protocol. The adversary passes the audit if it can re-
produce a state that, when joined with the client’s state,
is indistinguishable from the joint honest state.

B. Quantum specious adversary

A one-to-one translation of the honest-but-curious ad-
versary to the quantum case leads to difficulties. First
of all, due to the no-cloning theorem, a quantum adver-
sary cannot copy the states during the interactions with
the clients. The honest attribute could, at first sight, be
translated as it is. However, if we think of the definition
with the auditor, then we should allow the adversary to
perform a delayed measurement attack. In such an at-
tack, the adversary ignores the protocol instruction to
measure the quantum state. At a later point in the pro-
tocol, at least during the audit, the adversary applies the
measurement.

This directly leads us to the specious adversaries de-
fined by Dupuis, Nielsen, and Salvail [5]. They call an
adversary specious, if at every step in the protocol, the
adversary can pass an audit by applying a local opera-
tion. It is crucial to consider every step in the protocol,
because of the no-cloning theorem.

The purification attack is a well known attack in the
quantum cryptography community. The adversary im-
plementing the purification attack is usually called a pu-
rified adversary. The purified adversary is specious, be-
cause at every step in the protocol, the adversary can
trace-out the purification quantum registers. By this, the
global state, which might be shared between the clients
and the adversary, gets reverted to the valid state.

C. Le Gall’s adversarial model

The adversary in Le Gall’s scheme follows the protocol
to the extent of discarding information. In the first step
of the protocol, the adversary implicitly measures the
input state. In contrast to the classical case, honest-
but-curious adversaries never discard information. On
the contrary, these adversaries are forced to remember
everything they see. The linear PIR lower bound indeed
also holds for honest-but-curious adversaries [4].

An explicit attack to break Le Gall’s protocol, where
the adversary does not measure the input state, can be
found in the master’s thesis of Ä. B. [1, page 44].

III. PROOF IDEA

The proof of Theorem 1 can be found in our
manuscript [2, page 6]. In the proof we first reduce any
multi-step QPIR protocol to a single-step QPIR protocol.
In a single-step QPIR protocol, the server sends one mes-
sage to the client, who then extracts the desired bit. This
exactly describes quantum random access codes (RAC),
where any database item can be retrieved from a quan-
tum state encoding the database. After the reduction,
the proof is finished by applying Nayak’s lower bound on
random access codes [7].
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That this reduction is possible is shown in two steps.
First, one needs to describe how the reduction is done.
The server simulates the client and assumes 1 as the
client’s index. At the end of the simulation, the state
of the simulated client is sent to the real client, who ap-
plies a map to change the global state in such a way,
as if the server used i as the index. That this can be
done is shown using Uhlmann’s lemma and the Fuchs-
van de Graaf inequalities. This alone is not sufficient
to prove the theorem. In order to apply Nayak’s RAC
lower bound, one also needs to show that the communi-
cation complexity of the single-step protocol is at most
as large as the communication complexity of the original
protocol. This is shown by limiting the Schmidt rank of

the state resulting from the simulation, and by Schmidt
compressing the client’s state.

IV. CONCLUSION

We presented the communication complexity lower
bound for information-theoretic single-server Quan-
tum Private Information Retrieval protocols in a non-
technical way. Furthermore, we stressed on the rather
conceptual contribution, namely that comparing classi-
cal and quantum adversaries is not trivial.
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