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Introduction

e Standard quantum key distribution (QKD) is limited to about 250 km due to losses in the optical
fiber.

e Quantum repeaters [Bril998] permit to extend this distance by nested entanglement distillation and
entanglement swapping.

e The secret key rate (bits per memory per second) resulting from a quantum repeater is given by
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where

— R (repeater rate) is the average number of generated entangled pairs per second,
— oo 18 the secret fraction, i.e., the ratio of the secret bits and the measured bits in the asymptotic
limit (Devetak-Winter bound 1 — S(X|E) — H(X|Y)),
— M is half the number of used memories per repeater node.
e We investigate the quantum repeater with encoding [Jia2009] in the context of quantum key dis-

tribution and compare it to the quantum repeater using distillation, as the former does not require
classical communication.

Memories

Quantum repeater with distillation:
e Number of needed memories depend on the distillation protocol:

— recursive protocol (Ozford protocol [Deul996)): M = 22-i%i,
—entanglement pumping (Innsbruck protocol [Duel999|): My = N +2 — |{k; : k; = 0}].
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Fig. 4. Entanglement pumping (Dir et al. protocol [Duel999|) with k£ = 3 rounds of purification.
e For optimality of the distillation protocols and strategies see [Bra2013].

Quantum repeater with encoding

e Number of memories used here is Mey = 2n (overhead for the remote CNOT).

Quantum repeater with
encoding

Generic quantum repeater
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[Bri1998] with maximal nesting level N and k

A . Fig. 2: Repeater protocol with encoding, from
rounds of distillation in all nesting levels.

17ia2009].

e Problem: classical communication is needed for
acknowledging the success of entanglement dis-
tribution, distillation and swapping.

e Advantage: classical communication is only
needed for acknowledging the success of entan-
olement entanglement distribution and in the end
for communicating the Pauli frame.

e Disadvantage: many logical gates are needed.

Results: optimal repeater protocol

o Here: distillation only in the end (k = {0,k})

. .. B no key with protocols Ozford (O) and Innsbruck (1I);
095 | = quantum repeater with encoding (QEC) for the
_— three-qubit repetition code (n = 3).
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Fig. 5: Optimal quantum repeater protocols w.r.t. legtiom 18 @il

the secret key rate per memory per second for
N =1 in terms of the initial fidelity F{y and the

gate quality pg.

e The Innsbruck protocol is not optimal for this
set of parameters, but it was shown in [Bra2013]
that this can be achieved for other parameters.

QR with encoding: remote CNOT and error models

Assumptions:

e One-qubit operations are error iree,

e crror model for two-qubit operations (depolariz-
ing map): Orealp _ pGOzdealp 4 17%]17

e Bell pairs are depolarized:
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Fig. 3: Remote CNOT for the quantum repeater
with encoding, adapted from [Jia2007].

e Application of multiple two-qubit gates and neglecting errors of order 32 = (1 — pg)2 and higher
leads to

Length[op] (Length[op] Length[op] i—1 Length[op] i—1
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where op = {Up, ..., U1 } is the list of gates and f(i, p, A) := tr; (ApAT) ® %

Results: optimal secret key rate

0.95
e The generation of a non-zero secret key rate for

N =1 at a distance of L = 600 km 1is limited to
very good gates and good initial fidelities.
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e For having good gates (po > 0.98), but modest
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075 08 085 09 0095 key rate per memory per second on the order of

Initial fidelity Fy 1074,

o
o0

Fig. 6: Optimal secret key rate per memory per
second for the quantum repeater protocols
(N = 1) shown above in terms of the initial fidelity
Fp and the gate quality pg.

Discussion

e We calculated the secret key rate per memory per second by comparing two approaches for the
quantum repeater: either using distillation or using quantum error correction.

e We found that for modest fidelities (F{y < 0.8) we can still obtain a non-zero secret key rate, but we
require good gates (pg > 0.98).

e Future work includes the extension of these calculations to higher nesting levels (more swappings)
and other error correcting codes.

The repeater rate

e Average number of attempts to connect m pairs, each generated with probability Py (Py = 10~ Lo/10
is the probability that a photon is not absorbed at a distance Ly = L/m) and deterministic entan-
glement swapping |Ber2011]:
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Generic Quantum Repeater Quantum repeater with encoding

e The repeater rate including the classical commu- e For deterministic swapping:

nication time can be found in [Bra2013]. 1
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e Using distillation and no classical communication
time the rate is [Abr2013]:

with n being number of physical qubits to encode

T \3 one logical qubit.

PB(@', n) is the success probability in the i-th distillation round and n-th nesting level for the Ozford
protocol [Deul996|, Ty = Lg/c (c is the speed of light in the optical fiber), and Prpg(n) is the success
probability of entanglement swapping in the n-th nesting level.
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