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Continuous-variable quantum key distribution has made great progress during the last years.
Recently, a security proof for a finite number of measurements with composable security against
arbitrary attacks was published which employs Einstein-Podolsky-Rosen (EPR) entangled states.
Here, we present a first implementation of this protocol, demonstrating the feasibility of secure
key generation. The implementation relies on continuous-wave quadrature-entangled states at the
telecommunication wavelength of 1550 nm with unprecedented EPR entanglement and homodyne
detection with a random choice of quadrature for each measurement. We further present the gener-
ation of a key which is secure under collective attacks with 108 measurements.

Since its invention in 1984 [1], quantum key distribu-
tion (QKD) has developed to the probably most impor-
tant application of quantum information [2, 3]. Discrete
variable systems which employ the polarization state of
single photons, have to rely on single photon sources and
especially, single photon detectors. In 2001 Cerf et al. [4]
came up with the first QKD protocol using the amplitude
and phase quadratures of light fields which are continu-
ous variables. These variables are usually measured by
homodyne detection where a strong light field, a so-called
local oscillator, is superimposed at a balanced beam split-
ter with a quantum state which carries the information
used to distribute a key. Both output ports of this beam
splitter are detected by PIN photo diodes which are stan-
dard telecommunication devices offering high bandwidth
and low electronic dark noise. Most commonly prepare-
and-measure schemes using Gaussian modulated coher-
ent states are employed [5–8] and distances between the
communicating parties, usually called Alice and Bob, of
up to 80 km were reached using these states [9].

While prepare-and-measure schemes have to use ran-
dom number generators to generate bit strings that are
encoded to the quantum states, entangled states [10] do
not need this side-information channel. For entangled
states the randomness of the key is directly offered by
the quantum measurement performed by Alice and Bob.
In their famous Gedankenexperiment in 1935 Einstein,
Podolsky and Rosen (EPR) employed states which were
entangled in their position and momentum [11]. Using
a criterion by Reid [12] for the counterpart of position
and momentum in quantum optics, the amplitude and
phase quadratures of light fields, Ou et al. [13] demon-
strated the non-locality property of quantum mechanics
and thus, the EPR paradox. Further implementations of
EPR entangled states are for instance presented in [14–
16]. Quadrature entangled states used for quantum key
distribution are reported in [17, 18].

In the past the security analysis of continuous-variable
protocols was performed in the asymptotic regime of in-
finite measurements [7, 19]. Recently, also effects caused
by a finite number of exchanged quantum states were
taken into account [20, 21]. While the finite-size Gaus-
sian modulation protocol from Ref. [20] was implemented
in [9], the protocols from Ref. [21] are based on EPR
entangled states and provide composable security [22]
for collective and arbitrary attacks, respectively. Indeed,
their proof of the protocol for arbitrary attacks demands
strongly entangled states, low optical loss and a large
number of measurements to achieve positive secure key
rates.

Here, we present the generation of EPR entangled
states at the standard telecommunication wavelength of
1550 nm which are capable of fulfilling the requirements
of the security proof under arbitrary attacks. Choosing
the measured quadratures at random we recorded 2×108

samples in a table-top environment and demonstrated
the feasibility of the secure key generation from the mea-
sured samples using a non-binary error correction code
with more than 91 % efficiency. Furthermore, we gener-
ated a key which is secure under collective attacks using
a post selection technique.

Figure 1 shows the experimental implementation of
the QKD protocol. The EPR entanglement was gen-
erated by superimposing two 1550 nm continuous-wave
squeezed vacuum modes at a balanced beam splitter. To
achieve a stable operation all degrees of freedom were
locked with active control loops. In particular, this in-
cluded the phase of the squeezed modes at the balanced
beam splitter, which is difficult to lock without introduc-
ing too much optical loss degrading the entanglement.
The bipartite states were characterized using the EPR-
Reid criterion [12]

E = min
g

Var(X̂A−gX̂B)×min
h

Var(P̂A−hP̂B) < 1 , (1)
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Figure 1. Experimental implementation of the QKD proto-
cols. QRNG: Quantum Random Number Generation, EOM:
Electro-Optical Modulator.

where X̂ denotes the amplitude quadrature, P̂ denotes
the phase quadrature and Var denotes the variance. Our
states exhibited an EPR-value of E = 0.0309±0.0002 [23]
improving the previous record reported in Ref. [15],
which was already outperforming all other experiments
by almost an order of magnitude. The measured EPR-
value could be achieved by using squeezed vacuum input
modes with more than 10 dB nonclassical noise reduc-
tion in the squeezed quadrature in comparison to vacuum
noise.

To generate a raw key Alice and Bob had to mea-
sure each sample either in amplitude or phase quadra-
ture which was chosen at random. For this purposes we
implemented fiber-coupled electro-optical modulators in
the local oscillator beams which applied fast phase shifts
to yield a measurement in the desired quadrature. The
measurements were timed to perform at a rate of 100 kHz.
The quantum random numbers used by Alice and Bob
for choosing the quadrature were provided by homodyne
measurements of a vacuum state [24].

Using 2×108 measurements we generated a raw key by
checking the abort conditions and by performing sifting,
parameter estimation and binning of the measurement
outcomes to a finite alphabet according to the protocol
from Ref. [21]. Assuming an error correction efficiency
of 95 %, Fig. 2 shows a simulation of the key rate with
security under arbitrary attacks versus the number of
measured samples after sifting for the states generated
by our entanglement source. The red line indicates the
number of samples we have measured for which a secure
key rate of 0.08 bits/sample could be achieved. A simu-
lation revealed that for the number of measurements we
have performed the secure key rate will be positive for
an error correction efficiency larger than about 91 %.

Since a non-binary error correction was not available,
we generated a secret key which is secure under collective
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Figure 2. Secure key rate for arbitrary attacks versus the
number of measured samples after sifting. The curve is sim-
ulated for our generated states. The red line indicates the
number of samples we have measured.

attacks using the collective protocol from Ref. [21]. To be
able to use a binary error correction algorithm instead,
the error rate was reduced by post selection. For this
purpose we used a 6 bit encoding of our measurements
with the bins having an equal spacing. By discarding
6 bins from the middle we were able to reduce the bit
error rate from about 13.2 % to 3.8 % which enabled use
to distill a key.

In conclusion, we have demonstrated the feasibility of
composable secure key generation with security against
arbitrary attacks using a finite number of samples. The
demanding requirements of the security proof on the EPR
entangled states could be fulfilled by implementing a low
loss setup with input squeezed vacuum states with more
than 10 dB squeezing. We further demonstrated the suc-
cessful secure key generation under collective attacks us-
ing a post selection technique. While for security against
arbitrary attacks only table-top implementations are pos-
sible, the finite-size QKD protocol with security against
collective attacks allows for distances between Alice and
Bob in the order of several ten kilometers.
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