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Position and Momentum Operators:

 Heisenberg's Uncertainty Relation

𝑉𝑎𝑟 𝑄 𝑉𝑎𝑟 𝑃 ≥ ℏ/2

 Generalization to Entropies (Beckner 75, I. Bialynicki-Birula and J. Mycielski. 75)

ℎ 𝑄 + ℎ 𝑃 ≥ log 𝑒𝜋

Finite dimensional (Massen and Uffink 88):

𝐻 𝑆 + 𝐻 𝑇 ≥ −log 𝑐 𝑐 = max
𝑘.𝑙

< 𝑠𝑘 𝑡𝑙 >  
2
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Motivation

Some History 



Motivation:

Uncertainty Principle in the Presence of Quantum 
Memory
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Example: A & B share maximally entangled qubits and 𝑺 = 𝝈𝒁 , 𝑻 = 𝝈𝑿

 no uncertainty for Bob

 maximal uncertainty for Charlie: completely uncorrelated to Alice and Alice’s 
state is maximally mixed

Combines uncertainty principle with monogomay of entanglement.

Observable S

Observable T



Motivation:

Uncertainty Principle in the Presence of Quantum 
Memory

Constraint on the sum of the uncertainty of Q w.r.t. Bob and P w.r.t. Eve:

𝐻 𝑆 𝐵 + 𝐻 𝑇 𝐸 ≥ − log 𝑐

𝐻 𝑆 𝐵 = 𝐻 𝑆𝐵 − 𝐻 𝐵 von conditional Neumann entropy of 𝜌𝑆𝐵 =  𝑠 𝑃 𝑠 𝑠 >< 𝑠 ⊗ 𝜌𝐵
𝑠 .

Exactly what we use in Quantum Key Distribution Protocols! 

M. Berta et al., Nature Physics 6, 2010
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Observable S

𝛿

Observable T

𝛿



Motivation:

The connection between QKD and the Uncertainty 
Principle with Quantum Memory
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Eve’s information can be bounded by the 
Uncertainty Principle with Quantum Memory:

𝑯 𝑺 𝑬 ≥ − 𝒍𝒐𝒈𝒄 − 𝑯 𝑻 𝑩

Observable S

Observable T

Eve



Motivation:

Application of the Uncertainty Principle with Quantum 
Memory in QKD Security Proofs

Discrete Protocol: 
Security of BB84 Protocol against coherent attacks including finite-size effects
M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, Nat. Commun. 3, 634 (2012). 

Continuous Variable Protocol: 
Security of two-mode squeezed state against coherent attacks including finite-size 
effects FF, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, Phys. Rev. Lett. 109, 100502 (2012) 

 first quantitative analyses against coherent attacks!
 using a binning of the continuous outcomes measurements into a finite 

number of outcomes  
 Implementation:
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Our Contribution

Generalize Uncertainty Principle to 

 continuous outcomes (e.g., Position-Momentum Operators)

 arbitrary (infinite-dimensional) quantum memories 

Entropy Measures:

 generalize differential conditional von Neumann entropy (asymptotic limit)

 introduce differential conditional min-/max-entropy (finite-size QKD!) 

Related work: 

 For restricted definition of diff. cond. von Neumann entropy: R. L. Frank, E. H. Lieb, 
arXiv:1204.0825

 For min-/max-entropy with arbitrary quantum memories but finite number 
of outcomes: M. Berta, FF, V. Scholz, arXiv:1107.5460 
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Outlook

I. Continuous Variable Systems

 Position and Momentum Operators

II. Differential Conditional von Neumann Entropy

 Approximation by finer and finer coarse graining 

III. Uncertainty Relations in Presence of Quantum Memory

 Finite precision position-momentum measurements

 Infinite precision position-momentum measurements
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Most Important Example in Quantum Information processing: 

Quadratures of em-field (continuous degree of freedom) 

Measurement: Homodyne detection  

Model for one mode:

 Equivalent to Harmonic Oscillator 

 Infinite-dimensional Hilbert space (square integrable functions)  

 Quadrature Measurement with phase shift 𝜙 =
𝜋

2
: P, Q satisfying

𝑄, 𝑃 = 𝑖

Position & Momentum Operators: Continuous spectrum!

Continuous Variable (CV) Systems
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Position & Momentum Mesurements

Continuous Outcomes (infinite precision): 
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Outcome:

𝑥 ∈ 𝑋 = Real Line 

𝜌𝐵(𝑥) = post-
measurement state 

Continuous probability 
distribution & set of post-
measurement states:

𝜌𝑋𝐵 "=" 𝑃 𝑥 , {𝜌𝐵(𝑥)}



Position & Momentum Mesurements

Discrete Outcomes (finite precision):
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𝛿

Outcome:

𝑘 ∈ 𝑋𝛿={0,1,2,…}

𝜌𝐵
𝑘

𝛿
Discretization

Discrete probability 
distribution & set of post-
measurement states:

𝜌𝑋𝛿𝐵 "=" 𝑝𝑘, {𝜌𝐵
𝑘}



Position & Momentum Mesurements

Continuous Outcomes (infinite precision): 

Discrete Outcomes (finite precision):
𝛿
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Outcome:

𝑥 ∈ 𝑋 = Real Line 

𝜌𝐵(𝑥) = post-
measurement state 

Continuous probability 
distribution & set of post-
measurement states:

𝜌𝑋𝐵 "=" 𝑃 𝑥 , {𝜌𝐵(𝑥)}

Outcome:

𝑘 ∈ 𝑋𝛿 = 

𝜌𝐵
𝑘

𝛿
Discretization

Discrete probability 
distribution & set of post-
measurement states:

𝜌𝑋𝛿𝐵 "=" 𝑝𝑘, {𝜌𝐵
𝑘}



Our approach to differential conditional entropies:

Further:

 Most General Setting 

 No restriction on the states (important for QKD)

II. Differential Conditional Entropies 
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A unified definition of conditional entropies 
continuous in the limit of finer and finer coarse 

graining!



Y finite discrete, B finite-dimensional system: 

𝑯 𝒀 𝑩 = 𝑯 𝒀𝑩 −𝑯 𝑩

 𝜌𝑌𝐵=  𝑦 𝑝𝑦 𝑦 >< 𝑦 ⊗ 𝜌𝐵
𝑦

“=“ 𝑝𝑦 , {𝜌𝐵
𝑦
} , 𝐻 𝜌 = −𝑡𝑟 𝜌 log 𝜌

 H(Y 𝐵) = − 𝑦𝐷(𝑝𝑦𝜌𝐵
𝑦
 𝜌𝐵 with 𝐷(𝜌 𝜎 = 𝑡𝑟𝜌log𝜌 − 𝑡𝑟𝜌 log𝜎

quantum relative entropy (arbitrary quantum systems, Araki ‘76) 

 X = real line: ℎ 𝑋 𝐵 = −∫𝐷(𝑃 𝑥 𝜌𝐵 𝑥  𝜌𝐵 𝑑𝑥 : differential entropy

 X = discrete: 𝐻 𝑋 𝐵 = − 𝑥𝐷(𝑝𝑥𝜌𝐵
𝑥 𝜌𝐵 (capital letter)
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II. Differential Conditional Entropies:
The Conditional von Neumann Entropy

Definition: (𝑿, 𝝁)measure space

𝒉 𝑿 𝑩 = −∫𝑫(𝑷 𝒙 𝝆𝑩 𝒙  𝝆𝑩 𝒅𝝁(𝒙)



Continuous Variable X = real line

I. Coarse Graining with 𝛿:  

𝑋𝛿=discrete and conditional entropy 𝐻 𝑋𝛿 𝐵

II. Infinte Precision: 

𝑋= real line and conditional entropy h X𝛿 B

 Assumptions: ℎ 𝑋 𝐵 ≻ −∞ and  𝐻 𝑋𝛿 𝐵 < ∞ for an arbitrary 𝛿. 

II. Differential Conditional Entropies:
Discrete Approximation
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𝛿

Approximaton Theorem:

ℎ 𝑋 𝐵 = lim
𝛿→0

( 𝐻 𝑋𝛿 𝐵 + 𝑙𝑜𝑔𝛿 )

Observable S

𝛿



 Operational Approach

 Practical (computations)

 Intuition: It converges for 𝛿 small enough such that function looks constant

II. Differential Conditional Entropies:
Discrete Approximation
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Approximaton Theorem:

ℎ 𝑋 𝐵 = lim
𝛿→0

( 𝐻 𝑋𝛿 𝐵 + 𝑙𝑜𝑔𝛿 )

Entropy in V =−
𝑉

𝛿
∗ 𝛿𝑓𝑘 log 𝛿𝑓𝑘 =

− 𝑉𝑓𝑘 log 𝑓𝑘 − 𝑉𝑓𝑘 log 𝛿

V

𝒇𝒌

2ℎ 𝑋 𝐵 = lim
𝛿→0

2𝐻 𝑋𝛿 𝐵

𝛿



III. Uncertainty Relation in Presence of Quantum Memory

P-Q Measurements with Finite Precision
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𝛿
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Momentum P

𝛿

Uncertainty Relation (finite precision):

𝐻 𝑄𝛿 𝐵 + 𝐻 𝑃𝛿 𝐶 ≥ −log 𝑐(𝛿)

𝑐 𝛿 = 𝑠𝑢𝑝
𝑘,𝑙

𝑄𝛿
𝑘 𝑃𝛿

𝑙

2

≈
𝛿2

2𝜋ℏ

Finite Precision Measurements

Arbitrary 
(inf. dim.)



III. Uncertainty Relation in Presence of Quantum Memory

The Complementarity Constant 
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Complementarity : 𝑐 𝛿 = 𝑠𝑢𝑝
𝑘,𝑙

𝑄𝛿
𝑘 𝑃𝛿

𝑙
2

≈
𝛿2

2𝜋ℏ

−log 𝑐(𝛿) for small 𝛿 (ℏ = 1)

Variance of Vacuum

𝑐(𝛿)

Support of Vacuum



Discrete Approximation Theorem:

Is it sharp (exists a state for which equality holds)?

 Not sharp without quantum memory: (Beckner, Ann. of Math., 102:159, 1975)

ℎ 𝑄 + ℎ 𝑃 ≥ log 𝑒𝜋ℏ
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III. Uncertainty Relation in Presence of Quantum Memory

P-Q Measurements with Infinite Precision

𝐻 𝑄𝛿 𝐵 + log𝛿 + 𝐻 𝑃𝛿 𝐶 + log𝛿 ≥ log
𝑐 𝛿

𝛿2

Uncertainty Relation (continuous case):

ℎ 𝑄 𝐵 + ℎ 𝑃 𝐶 ≥ log 2𝜋ℏ

𝛿 → 0 , ℎ 𝑋 𝐵 = lim
𝛿→0

( 𝐻 𝑋𝛿 𝐵 + 𝑙𝑜𝑔𝛿 )



Sharp with quantum memory:

 EPR-state on A and B for Infinite squeezing !
(EPR-state = pure two-mode squeezed Gaussian state 

with maximally correlated quadratures)
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III. Uncertainty Relation in Presence of Quantum Memory

Sharpness of the Uncertainty Relation

Gap depending on 
squeezing

10dB squeezing:
Tobias et al, Optical
Express, 21:11546{11553, 
2013

Gap closes 
exponentially!



Summary

 introduced general differential conditional entropy measures

 derived uncertainty relations for coarse-grained and continuous outcomes.

 Same uncertainty relations for min- and max-entropies (tight for finite and 
infinite precision measurements)

 tight in the continuous case

Outlook:

 Possible applications in QKD: no discretization needed (extremality of 
Gaussian attacks) 

 Approximation of discrete entropies: 𝐻 𝑋𝛿 𝐵 ≥ ℎ 𝑋 𝐵 − 𝑙𝑜𝑔𝛿

 …
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Conclusion and Outlook
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