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Motivation
Some History

Position and Momentum Operators:

Heisenberg's Uncertainty Relation

JVar(Q)Var(P) = h/2

Generalization to Entropies (Beckner 75, I. Bialynicki-Birula and J. Mycielski. 75)

h(Q) + h(P) = logen

Finite dimensional (Massen and Uffink 88):

H(S)+ H(T) = —logc ¢ = n}ca}xl< Silt; > |2
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Motivation:

Uncertainty Principle in the Presence of Quantum
Memory

Bob
7N

Observable S ((( ((( ((( %
A @

Observable T

Example: A & B share maximally entangled qubitsand S =0, , T = oy
U no uncertainty for Bob

L maximal uncertainty for Charlie: completely uncorrelated to Alice and Alice’s
state is maximally mixed

Combines uncertainty principle with monogomay of entanglement.
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Motivation:

Uncertainty Principle in the Presence of Quantum
Memory

s @
Observable S ((( ((( ((( ’ ‘ P—
Observable T

Constraint on the sum of the uncertainty of Q w.r.t. Bob and P w.r.t. Eve:
H(S|B) + H(T|E) = —logc

H(S|B) = H(SB) — H(B) von conditional Neumann entropy of psg = X.c P(s)|s >< 5| ® p5 .
Exactly what we use in Quantum Key Distribution Protocols!
M. Berta et al., Nature Physics 6, 2010
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Motivation:

The connection between QKD and the Uncertainty
Principle with Quantum Memory

________________

_________________

))) ») 9 ») %

Eve’s information can be bounded by the ESE
Uncertainty Principle with Quantum Memory: na VM

H(S|E) = —logc — H(T|B)
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Motivation:

Application of the Uncertainty Principle with Quantum
Memory in QKD Security Proofs

Discrete Protocol:

Security of BB84 Protocol against coherent attacks including finite-size effects
M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, Nat. Commun. 3, 634 (2012).

Continuous Variable Protocol:
Security of two-mode squeezed state against coherent attacks including finite-size

effects FF, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, Phys. Rev. Lett. 109, 100502 (2012)

O first quantitative analyses against coherent attacks!
U using a binning of the continuous outcomes measurements into a finite
number of outcomes

D Implementatlon: Realization of finite-size continuous-variable quantum key distribution based on
Einstein-Podolsky-Rosen entanglement
Tobias Eberle, and Vitus Handchen, Fabian Furrer, Torsten Franz, Jorg Duhme, Reinhard F.
Werner, and Roman Schnabel
Abstract gmExtended abstract
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Our Contribution

Generalize Uncertainty Principle to
continuous outcomes (e.g., Position-Momentum Operators)
arbitrary (infinite-dimensional) quantum memories
Entropy Measures:
generalize differential conditional von Neumann entropy (asymptotic limit)
introduce differential conditional min-/max-entropy (finite-size QKD!)
Related work:

For restricted definition of diff. cond. von Neumann entropy: R. L. Frank, E. H. Lieb,
arXiv:1204.0825

For min-/max-entropy with arbitrary quantum memories but finite number
of outcomes: m. Berta, FF, V. Scholz, arXiv:1107.5460
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Outlook

Continuous Variable Systems

Position and Momentum Operators

Differential Conditional von Neumann Entropy

Approximation by finer and finer coarse graining

Uncertainty Relations in Presence of Quantum Memory

Finite precision position-momentum measurements
Infinite precision position-momentum measurements
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Continuous Variable (CV) Systems

Most Important Example in Quantum Information processing:
Quadratures of em-field (continuous degree of freedom)

Measurement: Homodyne detection Local Oscillator

v
Signal II.
v

Equivalent to Harmonic Oscillator w =

Model for one mode:

Infinite-dimensional Hilbert space (square integrable functions)
Quadrature Measurement with phase shift ¢p = %: P, Q satisfying
[Q,P] =1
Position & Momentum Operators: Continuous spectrum!

FF, CONTINUOUS VARIABLE ENTROPIC UNCERTAINTY RELATIONS IN THE

20/08/2013

PRESENCE OF QUANTUM MEMORY



5K

C_ ’ THE UNIVERSITY OF TOKYO

Position & Momentum Mesurements

Continuous Outcomes (infinite precision):

{__. Outcome: 71 Continuous probability
L x € X = Real Line distribution & set of post-
b :> | measurement states:

;#% (65} <[5 pxg "=" P(x),{pp(x)}

measurement state —
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Discrete Outcomes (finite precision):

20/08/2013

o)
-l-|—|—|-1-|—|—|—!]—|"'—_i—|—|-l-|—|—b

Outcome:
/7’} k € X5={0,1,2,...}
&) Discretization :> "
PpB

Bob

22 _
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Position & Momentum Mesurements

Continuous Outcomes (infinite precision):

_ﬁ{_ﬁ. Outcome: 7 Continuous probability
L L x € X = Real Line distribution & set of post-
—> | measurement states:
Bob n__n
=" P(x), X
measurement state — 5 <
Discrete Outcomes (finite precision): /-|—|—|-/.|_|_|_|_|_|_|_|.1.|_|_b,§° X
[ Outcome: ¢® ’b\(\
___.}_ﬁ. /7% k€ X = D.|scr.ete Probablllty >
@ © Discretization :> distribution & set of post-
" | measurement states:

Bob pB

% PxsB = Dk {r5}
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|l. Differential Conditional Entropies

Our approach to differential conditional entropies:

A unified definition of conditional entropies
continuous in the limit of finer and finer coarse
graining!

Further:
Most General Setting

No restriction on the states (important for QKD)
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|l. Differential Conditional Entropies:
The Conditional von Neumann Entropy

Y finite discrete, B finite-dimensional system:

H(Y|B) = H(YB) — H(B)

“_u

pye= Xy Dyly ><y| ® pp “=“py.{pp}, H(p) = —tr plogp

H(Y|B) = — X, D(pyp3|lps) with D(p|lo) = trplogp — trploga
guantum relative entropy (arbitrary quantum systems, Araki ‘76)

Definition: (X, u) measure space

h(X|B) = —[ D(P(x)pg(x)|lpg)dp(x)

X =real line: h(X|B) = —[ D(P(x)pg(x)||pg)dx : differential entropy

X = discrete: H(X|B) = — Y., D(p,pa|lps) (capital letter)
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|l. Differential Conditional Entropies:
Discrete Approximation

Continuous Variable X = real line

)
|. Coarse Graining with 6 -I-|—|—|-/-|—|—|—g—|"—“|—|—|-l-|—|—b

78

Observable S

Xs=discrete and conditional entropy H(Xs|B)

Il. Infinte Precision:

X=real line and conditional entropy h(Xs|B)

Approximaton Theorem:

h(X|B) = (lsi_rg (H(Xs|B) + logé )

Assumptions: h(X|B) > —oo and H(Xg|B) < oo for an arbitrary §.
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|l. Differential Conditional Entropies:
Discrete Approximation

Approximaton Theorem:

A(X|B) = lim (H(Xs|B) + logs )

2H(X5|B)

Operational Approach 2h(X|B)= (lsimT
-0

Practical (computations)

Intuition: It converges for 6 small enough such that function looks constant

Entropy in V =—% * (0f)logéfi =
— Vfilog fx — Vfi logd
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l1l. Uncertainty Relation in Presence of Quantum Memory
P-Q Measurements with Finite Precision
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Finite Precision Measurements

7o

75

Bob

% Arbitrary

Charlie (lnf dlm)

&/

Uncertainty Relation (finite precision):
H(Qs|B) + H(Ps|C) = —log c(9)

c(6) = Sup Znh

Q%

—+/4——D
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l1l. Uncertainty Relation in Presence of Quantum Memory
The Complementarity Constant

20 1.0 :
I
_ _ ]
y log c(6) forsmall § (A = 1) 0.8 c(6) :
1
- 0.6 :
10 : Support of Vacuum :

I .
=/ Variance of Vacuum - \i
: 1

1

5 ! - i
: 1
0 | 0.0 :
0.0 > () i 2 3 4

Spacing: 6 Spacing:
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l1l. Uncertainty Relation in Presence of Quantum Memory
P-Q Measurements with Infinite Precision

Discrete Approximation Theorem:

c(6)

H(Qs|B) +logé + H(Ps|C) + logs = log?

ﬂ 6-0, h(XlB)=(lSirr(1)(H(X5|B)+logS)

Uncertainty Relation (continuous case):

h(Q|B) + h(P|C) = log 2mh

Is it sharp (exists a state for which equality holds)?
Not sharp without quantum memory: (Beckner, Ann. of Math., 102:159, 1975)

h(Q) + h(P) = log emh
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l1l. Uncertainty Relation in Presence of Quantum Memory
Sharpness of the Uncertainty Relation

Sharp with quantum memory:

EPR-state on A and B for Infinite squeezing ! -2
(EPR-state = pure two-mode squeezed Gaussian state
with maximally correlated quadratures)

1
- Gap depending on Gap closes
. 0.1 .
squeezing exponentially!
0.3
0.01
. 10dB squeezing:
0.2 I Tobias et al, Optical 0.001
: el Express, 21:11546{11553,
|
o i 2013 -
|
I 1075
0.0 !
0.0 0.5 1.0 1.5 2.0 25 3.0 0.0 0.5 1.0 1.5 2.0 25 3.0
Squeezing r Squeezing r
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Conclusion and Outlook

Summary
introduced general differential conditional entropy measures
derived uncertainty relations for coarse-grained and continuous outcomes.

Same uncertainty relations for min- and max-entropies (tight for finite and
infinite precision measurements)

tight in the continuous case
Outlook:

Possible applications in QKD: no discretization needed (extremality of
Gaussian attacks)

Approximation of discrete entropies: H(Xs|B) = h(X|B) — logé

FF, CONTINUOUS VARIABLE ENTROPIC UNCERTAINTY RELATIONS IN THE

20/08/2013

PRESENCE OF QUANTUM MEMORY



L N

(:_ ’ THE UNIVERSITY OF TOKYO

THANK YOU FOR YOUR ATTENTION

MARIO BERTA, VOLKHER SCHOLZ, MATTHIAS CHRISTANDL
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