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Uncertainty relations are a distinctive char-
acteristic of quantum theory that imposes in-
trinsic limitations on the precision with which
physical properties can be simultaneously deter-
mined. The modern work on uncertainty rela-
tions employs entropic measures to quantify the
lack of knowledge associated with measuring non-
commuting observables. However, I will show in
this talk that there is no fundamental reason for
using entropies as quantifiers; in fact, any func-
tional relation that characterizes the uncertainty
of the measurement outcomes can be used to de-
fine an uncertainty relation. Starting from a sim-
ple assumption that any measure of uncertainty
is non-decreasing under mere relabeling of the
measurement outcomes, I will show that Schur-
concave functions are the most general uncer-
tainty quantifiers. I will then introduce a novel
fine-grained uncertainty relation written in terms
of a majorization relation, which generates an in-
finite family of distinct scalar uncertainty rela-
tions via the application of arbitrary measures of
uncertainty. This infinite family of uncertainty
relations includes all the known entropic uncer-
tainty relations, but is not limited to them. In
this sense, the relation is universally valid and
captures the essence of the uncertainty principle
in quantum theory.

Uncertainty relations lie at the core of quantum cryp-
tography and are a direct manifestation of the non-
commutative structure of quantum mechanics. In con-
trast to classical physics, where in principle any observ-
able can be measured with arbitrary precision, quantum
mechanics introduces severe restrictions on the allowed
measurement results of two or more non-commuting ob-
servables. Uncertainty relations are not a manifestation
of the experimentalists’ (in)ability of performing precise
measurements, but are inherently determined by the in-
compatibility of the measured observables.

The first formulation of the uncertainty principle was
provided by Heisenberg [1], who noted that more knowl-
edge about the position of a single quantum particle im-
plies less certainty about its momentum and vice-versa.
He expressed the principle in terms of standard devia-

tions of the momentum and position operators

∆X ·∆P >
~
2
. (1)

Robertson [2] generalized Heisenberg’s uncertainty prin-
ciple to any two arbitrary observables A and B as

∆A ·∆B >
1
2
|〈ψ|[A,B]|ψ〉|. (2)

A major drawback of Robertson’s uncertainty princi-
ple is that it depends on the state |ψ〉 of the system.
In particular, when |ψ〉 belongs to the null-space of the
commutator [A,B], the right upper bound becomes triv-
ially zero. Deutsch [3] addressed this problem by pro-
viding an entropic uncertainty relation (EUR) in terms
of the Shannon entropies of any two non-degenerate ob-
servables, later improved by Maassen and Uffink [4] to

H(A) +H(B) > −2 log c(A,B). (3)

Here H(A) is the Shannon entropy [5] of the probabil-
ity distribution induced by measuring the state |ψ〉 of
the system in the eigenbasis {|aj〉} of the oservable A
(and similarly for B). The bound on the right hand
side c(A,B) := maxm,n |〈am|bn〉| represents the maxi-
mum overlap between the bases elements, and is inde-
pendent of the state |ψ〉.

Recently the study of uncertainty relations intensified
(see [6] for a recent survey), and as a result various im-
portant applications have been discovered, ranging from
security proofs for quantum cryptography [7–9], infor-
mation locking [9], non-locality [10], and the separability
problem [11]. There were also recent attempts to gen-
eralize uncertainty relations to more than two observ-
ables. For this case relatively little is known [12–16], as
the authors investigated only particular instances of the
problem such as mutually unbiased bases.

In most of the recent work on uncertainty relations,
entropy functions like the Shannon and Renyi entropies
are used to quantify uncertainty. Such entropies are used
in information theory to quantify asymptotic rates of cer-
tain information processing tasks [5], in which the con-
cepts of typical sets play a crucial role. However, in the
context of the uncertainty principle where a single physi-
cal system is involved, these entropies are not necessarily
the most adequate to use. Indeed, as will be shown in the
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FIG. 1: With probability r Alice samples from a random vari-
able (blue dice), and with probability 1−r, Alice samples from
its relabeling (red dice), but at the end of the protocol she
“forgets” where she sampled from. The resulting probability
distribution rp + (1− r)πp is more uncertain than the initial
one associated with the blue (red) dice p (πp). Color online.

talk, other functions can be more suitable in providing a
quantitative description for the uncertainty principle.

Uncertainty is related to the “spread” of a probability
distribution, or, equivalently, to the ability of learning
that probability distribution. Intuitively a less spread
distribution is more certain than a more widely spread.
For example, in a d-dimensional sample space, the prob-
ability distribution p = (1, 0, . . . , 0) is the most certain,
whereas the distribution q = (1/d, 1/d, . . . , 1/d) is the
most uncertain. What are then the minimum require-
ments that a good measure of uncertainty has to satisfy?

In his seminal paper [3] on EURs, Deutsch pointed out
that the standard deviation ∆ can be increased by mere
relabelling of the random variables associated with the
measurements. He therefore concluded that the relation
in (1) can not be used as a quantitative description of the
uncertainty principle. Following Deutsch observation, we
assume in [20] that the uncertainty about a random vari-
able can not increase under a relabelling of its alphabet.
We call this very reasonable presumption monotonicity
under relabelling (MUR). This is our only requirement
from a measure of uncertainty.

There are several consequences of the MUR assump-
tion. First, the uncertainty associated with a probability
vector p can not be larger than the uncertainty associated
with a relabelled version of it, πp, where π is some permu-
tation matrix. In fact, both uncertainties are the same as
permutations acting on a probability space are reversible.
Second, the uncertainty can not decrease under random
re-labelings, see Fig. 1. We therefore conclude that any
reasonable measure of uncertainty is a function only of
the probability vector, is invariant under permutations of
its elements, and must be non decreasing under a random
relabelling of its argument.

We formulate the above requirements quantitatively
using Birkhoff’s theorem [17, 18], which states that
the convex hull of permutation matrices is the class of
doubly-stochastic matrices (their components are non-

negative real numbers, and each row and column sums
to 1). Birkhoff theorem thus implies that a probability
vector q obtained from p by a random relabeling is more
uncertain than the latter if and only if the two are related
by a doubly-stochastic matrix, q = Dp, which is equiva-
lent to q ≺ p. The last equation is known as a majoriza-
tion relation [19] and consists of a system of d inequali-
ties1. The above discussion implies that any measure of
uncertainty has to preserve the partial order induced by
majorization. The class of functions that preserve this or-
der are the Schur-concave functions. These are functions
Φ on a d-dimensional probability space, Φ : Rd −→ R,
for which Φ(x) > Φ(y) whenever x ≺ y, ∀x,y ∈ Rd.
We therefore define a measure of uncertainty as being
any non-negative Schur-concave function that takes the
value zero on the vector x = (1, 0, . . . , 0). The last re-
quirement is not essential but is convenient as it ensures
that the measure is non-negative definite.

Our definition for a measure of uncertainty is very gen-
eral and resulted solely from requiring monotonicity un-
der relabellings; it also encompasses the most common
entropy functions used in information theory, but it is
not restricted to them. As we are not concerned with
asymptotic regimes, we use in the following the most
general Φ to quantify uncertainty, without making any
assumptions about its functional form.

Having defined what a measure of uncertainty is, we
now use it to study uncertainty relations. Let ρ be a
mixed state on a d-dimensional Hilbert space H ∼= Cd.
For simplicity of the exposition, we first consider two
basis (projective) measurements. We denote the two or-
thonormal bases of H by {|am〉}dm=1 and {|bn〉}dn=1. We
also denote by pm(ρ) = 〈am|ρ|am〉 and qn(ρ) = 〈bn|ρ|bn〉
the two probability distributions obtained by measuring
ρ with respect to these bases. We collect the numbers
pm(ρ) and qn(ρ) into two probability vectors p(ρ) and
q(ρ), respectively. The goal of our work is to bound the
uncertainty about p(ρ) and q(ρ) by a quantity that de-
pends only on the bases elements but not on the state
ρ. The object of our investigation is therefore the joint
probability distribution p(ρ)⊗ q(ρ).

The main result in our article [20] is an uncertainty
relation of the form

p(ρ)⊗ q(ρ) ≺ ω, ∀ρ, (4)

where ω is some vector independent of ρ that we explic-
itly calculate. We call (4) a universal uncertainty relation

1 A vector x ∈ Rd is majorized by a vector y ∈ Rd, and write

x ≺ y, whenever
Pk

j=1 x↓j 6
Pk

j=1 y↓j for all 1 6 k 6 d − 1,

with
Pd

j=1 x↓j =
Pd

j=1 y↓j . The down-arrow notation denotes
that the component of the corresponding vector are ordered in

decreasing order, x↓1 > x↓2 > · · · > x↓d.
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FIG. 2: A quantum state is measured using two orthonormal
bases. We collect the induced joint probability distribution
in a vector p ⊗ q and quantify its uncertainty in terms of
a majorization relation, independently of the state ρ. Color
online.

(UUR) as, for any measure of uncertainty Φ,

Φ (p(ρ)⊗ q(ρ)) > Φ(ω), ∀ρ. (5)

The UUR (4) generates in fact an infinite family of uncer-
tainty relations of the form (5), one for each Φ. The right
hand side of (5) provides a single-number lower bound on
the uncertainty of the joint measurement results. When-
ever Φ is additive under tensor products (e.g. Renyi en-
tropies), (5) splits as

Φ(p(ρ)) + Φ(q(ρ)) > Φ(ω). (6)

A vector ωop is optimal for the UUR (4) whenever
ωop ≺ ω for all ω that satisfy (4). In [20] we find out this
optimal ωop. Moreover, we generalize the above UUR to
the most general setting of L ≥ 2 POVMs. Our rela-
tions are “fine-grained”; they do not depend on a single
number (such as the maximum overlap between bases el-
ements), but on all components of vector ω, which we
compute explicitly, via a majorization relation. Our un-
certainty relations are universal and capture the essence
of uncertainty in quantum mechanics, as they are not
quantified by particular measures of uncertainty such as
Shannon or Renyi entropies.

In the case of L > 2 measurements some uncertainty
relations can be trivially generated by a summing pair-
wise two-measurement uncertainty relations, one for each
pair of observables. However, our UURs in [20] are much
more powerful and not of this form. This fact can be
seen most clearly in a set of measurement operators in
which any two observables share a common eigenvector.
In this case, a two-measurement uncertainty relation will
provide a trivial lower bound of zero (hence the pair-
wise sum must also be zero) whereas our UUR provides
a non-trivial (i.e. non-zero) lower bound.
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