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2National Quantum Information Center of Gdańsk, 81-824 Sopot, Poland
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Motivation
It is known, that violation of Bell inequalities can lead

to the so called device independent security [5–7]. To
achieve security in device independent way, one needs to
have private randomness at hand. It has been shown by
Santha and Vasirani [3], that privacy of randomness can
not be amplified using classical means only and having
access to bits from specific source called further Santha-
Vasirani (SV) source. The SV source is parametrized
by a positive parameter ε. It is called ε-free if each of
its subsequent bits conditionally on any external variable
describing possible knowledge about them (including pre-
vious bits from the source) has bias that diverges from
unbiased distribution by ε. Facing such a classical no-go,
the natural question arises, with important philosophical
consequences: Can privacy of randomness be amplified
by quantum means? In [1] it has been shown, that if one
has access to ε-free SV source (i.e. ε-free randomness)
then one can obtain single bit that is ε′ < ε-free for any

ε′ > 0, providing ε < (
√
2−1)2
2 . It is reached by measuring

the so called N -th Chained Bell inequality [8] on a bipar-
tite quantum state, with properly high n. Further, in [2],
it is shown (existentially) that there is a procedure to ob-
tain any ε′-free bit starting from any ε < 1/2, based on
measuring Mermin’s inequality [9] on a 5-partite quan-
tum state. In [11] we follow these results, showing new
perspective on the subject, and then focusing on obtain-
ing randomness from the N -th Chained Bell inequalities.
The results
In presented manuscript, we show the following three

results:

1. We give characterization of the distributions of bits
drown from SV source, showing that they are mix-
ture of (certain) permutations of Bernoulli distri-
bution with probability of success given by 1/2 + ε
where SV is assumed to be ε-free.

2. We recast the problem of amplification of random-
ness in the language of the families of probabil-
ity distributions called here ’boxes’, and easily re-
derive the result of [1] in this terms.

3. We close the problem of randomness extraction us-
ing Chain Bell inequalities. The threshold value

of ε from which free randomness can be amplified,
is shown to be 0.901. To this end, we explore the
introduced boxes approach as well as the charac-
terization of ε-free sources.

Explanation of the results
Here we explain the results that are available in [11].

First result.-
A source of bits is called a Santha-Vazirani (SV) source

if for any random variable X = (X1, X2, . . . , Xn) pro-
duced by this source and for any 0 ≤ i < n and
xi = {0, 1}, there holds

1

2
− ε ≤ P (Xi+1 = xi+1|Xi = xi, . . . , X1 = x1) ≤ 1

2
+ ε.

(1)
The model can be interpreted as each bit being obtained
by the flip of a biased coin, the bias being fixed by an
adversary who has knowledge of the history of the pro-
cess. As such, the conditioning variables can be any set of
pre-existing variables W that could be a possible cause
of the succeeding bit Xi+1. Each bit produced by the
source is ε-free in the sense that the probability distribu-
tion is ε away in variational distance from the uniform
distribution.

Regarding characterization of the SV source, we first
observe, that a joint probability distribution given in
form of p(x)p(y|x) such that p(x) belongs to an allowed
set of distributions SX as well as p(y|x) to some set SY is
spanned by the probability distributions which are mul-
tiplications of extremal points of these two sets SX and
SY . Because of this multiplication rule, the resulting ex-
tremal distributions are Bernoulli distributions or their
permutations, as we exemplify below. The rest of the
proof goes by induction with respect to bits from the
source. To exemplify this consider p(x, y) to be distribu-
tion of two bits. By rule of total probability we can write
it as follows:

{p(x, y)} =
(
p(0)p(0|0), p(0)p(1|0), p(1)p(0|1), p(1)p(1|1)

)
(2)

Now, for x = 0, we have decomposition

p(0|0) = α0p++(1−α0)p−, p(1|0) = α0p−+(1−α0)p+.
(3)
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where p+ = 1/2 + ε and p− = 1/2− ε - the two extremal
distributions of SX . For x = 1 we have some other de-
composition

p(0|1) = α1p++(1−α1)p−, p(1|1) = α1p−+(1−α1)p+
(4)

since again p+ and p− are distributions of SY . We can
directly check that(

p(0)p(0|0), p(0)p(1|0), p(1)p(0|1), p(1)p(1|1)
)

=

α0α1

(
p(0)p+, p(0)p−, p(1)p+, p(1)p−

)
+

α0(1− α1)
(
p(0)p+, p(0)p−, p(1)p−, p(1)p+

)
+

(1− α0)α1

(
p(0)p−, p(0)p+, p(1)p+, p(1)p−

)
+

(1− α0)(1− α1)
(
p(0)p−, p(0)p+, p(1)p−, p(1)p+

)
(5)

Now we further decompose the distribution (p(0), p(1))
into extremal points of SX which are in this case the
same as those of SY : (p+, p−) and (p−, p+). Therefore
{p(x, y)} is mixture of the eight probability distributions

(
p+p+, p+p−, p−p+, p−p−

)
,
(
p+p+, p+p−, p−p−, p−p+

)
,(

p+p−, p+p+, p−p+, p−p−
)
,
(
p+p−, p+p+, p−p−, p−p+

)
,(

p−p+, p−p−, p+p+, p+p−
)
,
(
p−p+, p−p−, p+p−, p+p+

)
,(

p−p−, p−p+, p+p+, p+p−
)
,
(
p−p−, p−p+, p+p−, p+p+

)
,

(6)

where the ordering is as follows:(
p(0, 0), p(0, 1), p(1, 0), p(1, 1)

)
. (7)

Note that the first distribution is precisely the Bernoulli
distribution, with probability of 0 in single trial being
p = p+. This distribution is memoryless. The other
distributions are not memoryless, but are related to the
Bernoulli distribution by permutation of probabilities
(not bits). Note that only 8 out of 24 permutations ap-
pear. Not all permutations appear, because the bits from
SV source have ’history’, i.e. they are ordered in condi-
tion of SV source, which implies order in constructing
the joint probability distribution of n such bits, yielding
a tree structure, and in turn specific permutations.

The second result.-
Regarding second result, we re-derive result of [1] in

the way, that can be generally applied. We choose a Bell
inequality, which to be measured, with certain cardinal-
ity of measurements to be done, and certain cardinality
of outputs for each measurement. One of the output of
its measurement is taken as a bit with higher random-
ness. Measuring such a Bell inequality on quantum state
yields then a box B, of certain dimensions. This box,
being quantum, has some value of violation of the Bell
inequality BQ. Eve tries to cheat Alice and Bob, by using

the most local box she can, so that still when they mea-
sure the box with number of measurement taken from
SV source, they would observe quantum value BQ. We
then consider different mixtures of the extremal boxes i.e.
that are vertices of the whole polytope of non-signaling
boxes of dimension same as B, and check how much ran-
domness gives each of them. To be more specific now,
consider as Bell inequality the N -th Chain inequality [8].

The chained Bell inequality considers the bipartite sce-
nario of two spatially separated parties Alice and Bob
who each choose from a set of N measurement settings:
x ∈ {0, . . . , N − 1}A for Alice and y ∈ {0, . . . , N − 1}B
for Bob. Each measurement results in a binary outcome
a ∈ {0, 1} for Alice and b ∈ {0, 1} for Bob. The chained
Bell inequality is then written as∑
x=y||x=y+1

P (a⊕ b = 1|x, y) +P (a⊕ b = 0|0, N − 1) ≥ 1,

(8)
where ⊕ denotes addition modulo 2. Notice that out of
the N2 possible measurement pairs, only the 2N neigh-
boring pairs where x = y or x = y + 1 (sum modulo
N) forming a chain are considered in the inequality and
the LHV bound is obtained from the fact that perfect
correlations in the outcomes for the 2N − 1 pairs in the
sum automatically implies perfect correlation for the pair
{0, N − 1}. Quantum mechanics violates this inequality
obtaining a value of 2N sin2( π

4N ) which for large N tends
to the algebraic limit of 0. This optimal quantum value is
obtained by measuring on the maximally entangled state
|φ+〉 = 1√

2
(|00〉 + |11〉) with the measurement settings

defined by the bases {|0k〉, |1k〉} (for k = x, y). Here
|0k〉 = cos φk

2 |0〉 + sin φk

2 |1〉, |1k〉 = sin φk

2 |0〉 − cos φk

2 |1〉
with the angles φk = πk

2N .

It is straightforward to see, that taking into account
that Alice and Bob uses SV source to measure the above
Bell inequality (i.e. their choices are not fully random),
it changes into the following form:

∑
x=y||x=y+1

P (x, y|w)P (a⊕ b = 1|x, y) +

P (0, N − 1|w)P (a⊕ b = 0|0, N − 1) ≥ pmin (9)

where w is within the set of space-time variables with
which the imperfectly free SV source may be correlated
(and which may be thought of as held by the adversary
Eve). The bound pmin = minx,y P (x, y|w) is the mini-
mum probability of a pair of measurement settings cho-
sen by Alice and Bob, ideally pidealmin = 1

2N (for ε = 0).

Fortunately, by [10], for the polytope defined by
Chained Bell inequality, all boxes that gives full random-
ness violate maximally (giving 0), and all other extremal
boxes do not violate it giving at least value pmin. Let us
denote the box, which Eve sends to Alice and Bob by B′,
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and consider its decomposition into extremal boxes Bi:

B′ =
∑
i

piBi =
∑
i∈I

piB
r
i +

∑
j∈J

pjB
nr
j (10)

where Bri are extremal boxes with full randomness among
all extremal boxes Bi and Bnrj are those without random-
ness (I ∪ J gives all indices in the sum on the LHS). Let
us denote

∑
j∈J pj = δ. Taking the value of the N -th

Chain inequality on both sides, recalling that Eve should
report value that Alice and Bob observe i.e. βQ, hence
denoting β(X) the value of the Chain inequality on box
X, we get

βQ = (1− δ)
∑
i∈I

pi
(1− δ)

β(Bri ) + δ
∑
j∈J

pj
δ
β(Brj ) (11)

But β(Bri ) = 0 for boxes with randomness, and β(Bnrj )
equals at least pmin. Thus the best attack for Eve is to
satisfy:

βQ ≥ δpmin (12)

Now if
βQ

pmin
goes to 0, we have that δ vanishes, yielding

asymptotically perfect security, since the the only frac-
tion of non-random boxes in (10) disappears.

By definition, pmin is the minimal probability of the
distribution P (x,y) with which Alice and Bob will mea-
sure the Chain inequality. They need to choose out of
N2 measurements, that is they will have have to specify
x and y from range 1,...,N each, but accept it only in
2N cases. Each number has probability of occurring at
least p2 logN

− where p− = 1/2 − ε, since to describe both
the numbers of measurement x and y, they spend 2 logN
bits from SV source. Thus

pmin =
p2 logN
−

p2 logN
− + ||P (x,y)||2N−1

, (13)

where ||P (x,y)||2N−1 is the (2N − 1)th Ky Fan norm
of the probability distribution P (x,y) generated by the
source, i.e., the sum of the 2N − 1 largest probabilities.
The denominator of the above expression can be bounded
from above by 2Np2 logN

+ where p+ = ( 1
2+ε), since p2 logN

+

is the largest probability of occurrence of a bit string of
length 2 logN generated by the source. We therefore
have:

δpmin ≥ δ
p2 logN
−

2logN+1p2 logN
+

. (14)

Setting this inequality in RHS of (12), we obtain that the
fraction of non-random boxes δ approaches 0 (and perfect
randomness is obtained) as we increase the number of
measurement settings N provided

lim
logN→∞

π2

8

p2 logN
+

Np2 logN
−

= 0, (15)

giving
( 1
2+ε)

2

2( 1
2−ε)2

< 1, thus recovering ε < (
√
2−1)2
2 ≈ 0.086,

which is the result of [1].

The third result.-

Finally we use the characterization of the SV source
to compute exact threshold value of ε which allows for
(asymptotically) perfect security amplification. We do
this as follows. We want to find for which ε, the ex-
pression

βQ

pmin
, vanishes with large N , yielding vanishing

δ according to (12), which implies asymptotically fully
private randomness. Thus we need to lower bound pmin
and in turn, to upper bound the Ky Fan norm that we
have in its denominator. This is achieved by the fact,
that norm is convex, hence

||P (x,y)||2N−1 ≤
∑
i

qi||Pi(x,y)||2N−1 (16)

where Pi are extremal distributions in the set of distri-
butions satisfying SV source. Hence, by characterization,
each Pi is permutation of Bernoulli distribution, and thus
have the same Ky Fan norm as the Bernoulli (BE) dis-
tribution itself:

||P (x,y)||2N−1 ≤ ||BE(x,y)||2N−1 (17)

After some algebra, we find asymptotically exact
bound on RHS of the above inequality, which proves that
ε from which Alice and Bob can start to get asymptoti-
cally secure random bit is 0.0961. Interestingly, again by
elementary algebra we find, that this value is the high-
est ε for which full randomness amplification based on
Chained Bell inequality holds, hence it is a threshold
value for this way of obtaining full randomness.
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