
Reference frame agreement in quantum networks
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In this work we design a multiparty protocol between m players to agree on a common direction
without a prior reference frame shared between the players. Our protocol is tolerant to t < m/3
dishonest players with unbounded capabilities (the Byzantine problem). This is the first protocol to
exchange non-fungible information in the Byzantine setting.

Quantum theory uses physical properties such as mo-
mentum, position, phase, or time to encode information.
These properties are not absolute, but relative to a refer-
ence frame. When several parties need to communicate
quantum information a shared reference frame between
all the parties is very handy. Even though some tasks can
be done without, sharing a common reference frame is an
important tool to perform efficient shared computation,
and cryptographic tasks such as QKD.

One can see, that to share a Cartesian reference frame
one first have to be able to share a direction. But without
a pre-shared reference frame, one cannot exchange direc-
tional information by exchanging only classical data. So,
one must first exchange some physical object that points
towards a certain direction. The information carried by
such object is called non-fungible information. Sharing a
direction can only be done approximately and with some
probability of failure.

In this work, we examine the multiparty scenario in
which m parties should align their reference frames in the
Byzantine fault tolerance model, the players should suc-
ceed despite the faulty behavior of some of them. Byzan-
tine fault tolerance does not consider only failures (in
which players stop executing the protocol), but any ar-
bitrary errors. In particular, faulty players can send
incorrect messages, terminate the protocol, and even co-
ordinate their actions to fool the honest players. This
model also encompasses errors in the communication by
considering the sender faulty. Faulty parties are also some-
times called dishonest players, and can be considered as a
computationally unbounded adversary. This model allows
the strongest possible errors, and has been introduced by
Lamport et al. [1] in a distributed computation setting in
which honest players reach a consensus on a bit.

The name “Byzantine” comes from a problem faced by
the Byzantine army. Each of its divisions was led by a
general, and these generals could communicate between
them only by couriers. All the generals should agree on a
strategy: either the all attack, or the all retreat. However
some of the generals were disloyal to the Byzantine state.
Thus the challenge for the Byzantine generals was to reach
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a consensus on bit despite the presence among them of
dishonest generals. In this work, we show that quantum
generals, can reach a consensus, not only on binary order
such as attack or retreat, but on an arbitrary direction,
without the use of a reference (like north, or the position
of some stars).

Previous work. Byzantine consensus on a bit has been
heavily studied in several variations of model of compu-
tation (deterministic, randomized, and quantum) with
synchronous and asynchronous communication. The most
celebrated results show that there is a fully polynomial
protocol to Byzantine agreement on a bit tolerant to
t < m/3 dishonest players, and that this value is optimal.

The use of quantum communication has been consid-
ered in [2] as a mean to decrease to total amount of
communication needed, and in [3] in a fail-stop model
where the authors show that 3 quantum players can reach
a consensus even if one them is dishonest.

Our contributions

We introduce a quantum protocol to solve the Byzan-
tine reference frame consensus problem that is tolerant
to t < m/3 dishonest players. Our protocol succeeds

with probability at least qm
2

succ and with approximation
30δ where δ is the approximation done by sending one
direction between two players, and qsucc its success prob-
ability.
Model of communication. We assume that we have

authenticated and synchronous classical and quantum
channels for communications. This means that the players
know when they are supposed to receive a message, and
from whom. As a consequence, a player cannot be waiting
an unlimited amount of time for a message, this ensures
that our protocol terminates.

We only use quantum communication to send a direc-
tion between a sender and a receiver. We use one of
the simplest protocol to do it. A sender creates many
identical qubits with their Bloch vector pointing to the
intended direction and the receiver measure them with
Pauli measurements. From the statistics of the measure-
ment outcomes, the receiver then estimates the Bloch
vector’s direction closely with high success probability.
We do not require any quantum memory, or entangled
states, which potentially simplifies any experimental im-
plementation. But the downside of this choice is that our
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protocol is not optimal in the number of qubits sent to
achieve a certain accuracy. Optimal protocols can align
frames in the so-called Heisenberg limit, that is they have
a quadratic gain over the one we use here.

We also show that our protocol is tolerant to depolariz-
ing noise in the quantum channels. This is an important
fact since in the standard Byzantine setting, such noise
would be handled by considering the sender dishonest,
and thus all players would be dishonest!

Our protocol is independent of the implementation of
this two-party estimate direction protocol, we only use it
as a black box. Therefore, one can plug in his favorite two
party direction estimating protocol. Throughout all this
work, all our results are parametrized by the estimation
error δ, and the success probability qsucc of this black box.
Overview. Our protocol is designed in several layers.

The most important top layer protocol is called King
Consensus. In this protocol, one player is a king: he
chooses one arbitrary direction and sends it to all the
other players. All the honest players should then decide to
accept this direction, or they should all decide to reject it.
More precisely, the protocol satisfies Persistency : if the
king is honest, all the honest players will reach a consensus
on directions which are very close to the direction initially
chosen by the King. It also satisfies Consistency : no
matter whether the king is honest or dishonest, the honest
players either all agree on a common direction, or all of
them declare the King a cheater.

Running the King Consensus protocol with t + 1 dif-
ferent players as king ensures us then at least one of
these king will be honest, and thus a consensus will be
reached. The rest of this work is devoted to construct a
King Consensus protocol.

Before introducing the inner working of the king con-
sensus protocol, we will see two more protocols, namely
Weak Consensus protocol and Graded Consensus proto-
col. As the name suggest, the Weak Consensus protocol
satisfies a weaker version of persistency and consistency.
This protocol is used by the Graded Consensus protocol,
which satisfies stronger persistency and consistency re-
quirements. Ultimately the King Consensus protocol uses
the Graded Consensus to satisfy the previously mentioned
properties.
Weak Consensus. We now see how Weak Consensus

works. Here, every player starts with a direction wi

as input and outputs either a direction ui or ⊥. If all
the inputs wi of the honest players are δ-close to some
common direction s, then the honest players should reach
a consensus, i.e. they should output a direction ui also
close to s. However, we do not require that the honest
players reach a consensus if all the wi are not close to
some s. In this case, they are allowed to output ⊥. An
honest player outputting ⊥ can be interpreted as the
honest player declaring that his input wi is far from most
of the inputs of the other honest players.

The protocol satisfies δ-Weak Persistency, which means,
if all the honest players starts with a input direction which
are at least δ-close to a certain direction s, which they

Protocol 1: WEAK-CONSENSUS
Input : Direction wi

Output : Direction ui or ⊥
1 Send wi to all other players
2 Receive ai[j]← direction received from Pj

3 Create the set Si ← {Pj : d(wi, ai[j]) ≤ 3δ}
4 if |Si| ≥ m− t then
5 Assign, ui ← wi

6 else
7 Assign ui ←⊥
8 Output ui

are not aware of, then they will output directions which
are also at least δ close to s. It also satisfies (8δ)-Weak
Consistency, which says, any two honest players that
output a non-⊥ direction, must be at least (8δ)-close to
each other. This protocol succeeds with probability at

least qm
−m

succ . We recall that δ denotes the inaccuracy of
approximation the two-party direction estimating protocol
used, and qsucc its success probability.

Weak Consensus works by each player Pi making a set
Si of all the players who have sent a direction close to Pi’s
input direction wi. If the set contains more than m− t
players, he outputs wi. Otherwise, he outputs ⊥.

Proving persistency is immediate. The proof of the (8δ)-
consistency, that is d(ui, uj) ≤ 8δ if the players Pi and
Pj are honest, works as follows: First, we show that there
exists an honest players Pk who is in both sets Si and Sj .
This is true since Si and Sj contains more thanm/3 honest
players each. Secondly, we prove that d(ui, wk) ≤ 4δ and
d(uj , wk) ≤ 4δ. Indeed, by definition of the set Si, the
distance between ui and the approximation ai[k] of wk is
less than 3δ, and that approximation is δ-close to wk.

Graded Consensus. Using Weak Consensus we design
a higher level protocol called Graded Consensus. Simi-
larly to the Weak Consensus, the players have as input
a direction wi. However the outputs differ in two ways.
First, the players are not allowed to output ⊥ anymore,
they have to output a direction; and secondly, the players
output a grade gi ∈ {0, 1}. The grade does not simply
replace the output ⊥. The ⊥ output has a “local meaning”
whereas the grade has a “global significance”. Indeed, an
honest player Pi outputting grade gi = 1 means that all
the honest players have reached an agreement—even if
they are not all aware of it—, the ⊥ output in a Weak
Consensus protocol for an honest player Pi simply meant
that his own input differs too much to most of the other
honest players.

This protocol satisfies δ–Graded Persistency. That is, if
all the honest players start with input which are at least
δ close to some direction s, there all of them output grade
1 and their output directions are also at least δ-close to s.
The protocol satisfies (30δ)–Graded Consistency, which
states, if at least one honest player Pi outputs grade gi = 1
then all the honest players are at least (30δ)-close to each
other.

This protocol works by first running the Weak Consen-
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Protocol 2: GRADED-CONSENSUS
Input : A direction wi

Output : A direction vi and a grade gi ∈ {0, 1}
1 Run WEAK-CONSENSUS(wi)
2 if ui =⊥ then
3 Send flag fi = 0 to all other players
4 else
5 Send flag fi = 1 to all other players

6 forall the Player j do
7 fi[j]← Receive fj

8 forall the Player j do
9 Create set Si[j] = {Pk : fi[k] = 1, and

d(ai[j], ai[k]) ≤ 10δ}
10 Assign li ← arg max{|Si[j]|}
11 if fi = 1 then
12 Assign vi ← wi

13 else
14 Assign vi ← ai[li]

15 if |Si[li]| > m− t then
16 Assign gi ← 1
17 else
18 Assign gi ← 0

19 Output (vi, gi)

sus and keeping only outputs that are closed to each other.
Those outputs are then clustered into sets, depending on
the closeness of their Weak Consensus outcomes. The
grade gi = 1 is awarded only if there is a large set Si[j]
that contains many honest players close to each other.

It is easy to see that the protocol is δ-persistent. The
idea of the proof of the (30δ)-consistency is as follows:
we show that if one honest player output grade 1, then
the largest set of each honest players contains at least
one honest player. Hence, each output is (10δ) close to a
honest v, and the weak consensus assures us that all the
honest v are (8δ)-close to each other.
King Consensus. The King Consensus protocols is

build on top of the Graded Consensus protocol.

Protocol 3: KING-CONSENSUS
Input : Id of the king, Pk.
Output : A direction vi or ⊥

1 if I am the king then
2 Fix an arbitrary direction wk

3 Send wk to all other players

4 else
5 Receive wi, approximation of wk from the king

6 Assign (vi, gi)← GRADED-CONSENSUS(wi)
7 Assign yi ← CLASSICAL-CONSENSUS(gi)
8 if yi = 1 then
9 Output vi

10 else
11 Output ⊥

If the king is honest, all honest players will have grade
gi = 1, hence the classical consensus will be reached on
yi = 1 and the honest players will accept the direction
shared by the king. If the king is dishonest, the only
possibility for the honest players to reach a consensus on
a direction, is to have yi = 1. This is possible only if at
least one of the grades of the honest players is gi = 1. In
this case the (30δ) Graded Consistency implies the (30δ)
consistency of the King Consensus protocol, and thus of
the complete protocol.

Discussion

We have presented the first protocol for reference frame
agreement in a quantum network. Even in the classical
setting, the algorithms to solve the Byzantine agreement
problem are surprisingly complicated. We would be very
keen to know if simpler and more efficient protocols could
be designed for our setting, possibly by using entangled
states. It is an interesting open question to construct pro-
tocols that also work in an asynchronous communication
model. The latter is already challenging for the classical
case [4–7], so we expect a similar behavior to hold here.
Another interesting question is whether more dishonest
players than t < m/3 can be tolerated. If our protocol
were to succeed with probability 1 and δ sufficiently small,
we can prove that it is optimal in that sense by adapting
the classical proof [8] to our setting. However, for align-
ing reference frames, any protocol can only succeed with
probability strictly less than 1. This problem has been
partially studied in the classical case [9]. Even in the
constant error scenario the optimal number of dishonest
players that can be tolerated is not known for the classical
Byzantine agreement problem [10]. This leaves hope to
find protocols that can tolerate t < m/2 dishonest play-
ers when allowing constant success probability both for
Byzantine and reference frame agreement.
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