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Delegated Quantum Computation (DQC)

DQC: asking a server to perform some
(heavy) quantum computation.

Security concerns:
I the server, Bob, learns nothing about

the computation: blindness.
I the client, Alice, can verify that the

correct computation was performed:
verifiability.
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What are the factors of 1983745987234?

Composability

Stand-alone security: secure for one
run in an isolated environment.

Composable security: secure in an
arbitrary environment,
I input and output can be used in other

protocols,
I instances can be run in parallel.

Cryptography is inherently modular:
I protocols are used as subroutines in

other protocols,
I players can interact with many parties,

run various protocols simultaneously.

Not composable
= cryptographically insecure
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Is this also secure?

Toy example

Problem: find a witness for a positive instance of an NP problem.
Protocol: Bob sends Alice a random witness.
Blindness: no information was sent from Alice to Bob, so he obviously learnt nothing of

the input.
Verifiability: Alice can easily check if the witness is correct, she never accepts a wrong

solution.
Not secure: if Bob learns whether Alice accepted the solution, he learns something

about the problem; e.g.,
I Alice sends a letter of complaint,
I Alice renews the membership for another month of service.

These intuitive notions of security are insufficient.

Results

I Composable security definitions for
. blindness,
. blindness+verifiability.

I Proof of composable blindness for DQC protocol of
. Broadbent, Fitzsimons, Kashefi [STOC 2009],
. Morimae, Fujii [eprint 2012].

I Reduction of blindness+verifiability to a set of stand-alone definitions.
. Proves the security of Fitzsimons, Kashefi [eprint 2012],

Blindness+verifiability

Composable security: is the real
protocol distinguishable from an ideal
DQC resource?

Ideal blind and verifiable DQC:
I Alice gives it her input.
I Bob decides whether to compute the

correct outcome, inputs ok/err.
I Ideal resource performs the correct

computation or returns an error
depending on Bob’s decision.

Distinguishability:
I Can anything that is possible in the

real world be achieved in the ideal
world?

I Can Bob / a simulator generate the
transcript and bit ok/err on its own
without knowledge of the input?

I If given a box running the real protocol
or the ideal one and simulator, what is
the distinguishing advantage?
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Reduction of blindness+verifiability to stand-alone notions

Composable security

⇐⇒ PAB ≈ U ⊗ Fok + E rr ⊗Ferr.

PAB protocol with honest Alice and
dishonest Bob.

U transformation implemented by the
protocol.

E rr map that outputs an error flag.
F ok

err some local (subnormalized) maps on
Bob’s system.

Independent verifiability: test of
correctness is independent from the
input.
I Stand-alone blindness and

independent verifiability
=⇒ PAB ≈ U ⊗ Fok + E rr ⊗Ferr.

I If the input ψAB = ψA ⊗ ψB, the error
parameter is similar in the stand-alone
and composable cases.

I If the input is entangled, the error
increases by a factor (dimHA)

2.

Blindness

Ideal blind DQC:
I Does not leak the input ψA to Bob, but

does not guarantee that Alice gets the
correct outcome.

I Allows Bob to input a map E and state
ψB, that control the output.

I Returns E(ψAB) to Alice.

Distinguishability:
I The task of the simulator is to find E

and ψB (without any knowledge of ψA),
such that the output in the real and
ideal settings are indistinguishable.
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Blind DQC of Broadbent, Fitzsimons and Kashefi

Protocol (simplified):
I Alice sends Bob a one-time padded input XxZzψZzXx.
I Alice picks random angles θj, and sends Bob qubits |+θj〉 = (|0〉 + eiθj|1〉)/

√
2.

I Bob entangles them according to a predefined brickwork pattern.
I Alice sends one-time padded measurement angles φj + θj.
I Bob carries out the measurements, returns the last column to Alice.
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Pattern of a brickwork state

Proof (sketch):
I The simulator runs the protocol with

EPR halves and random strings.
I It sends the other EPR halves and

transcript to the ideal blind DQC.
I Ideal blind DQC teleports the correct

values using the EPR halves.
I Example:

XxZzψ3ZzXx ≡ Bell proj12(ψ1 ⊗ EPR23).

Abstract cryptography [Maurer, Renner]

I Models composability in an abstract
way, independently from the
underlying computational model.
. Applies immediately to both

classical and quantum crypto!
I Simplifies and generalizes previous

frameworks, e.g., Universal
Composability (UC) [Canetti].

I Strictly more powerful than previous
frameworks
. Can directly model mutually

distrustful dishonest players (e.g.,
coercibility).

. Can directly model non-
communicating adversarial devices
(e.g., device independent crypto).

AC security

Resources:
I Protocols π modelled as mapping

some (weak) resource R into another
(stronger) resource S.

R
π,ε−→ S.

I A resource can be modeled by a box
with an interface for each player.
. Guaranteed functionalities for

parties following the protocol.
. Other functionalities for parties not

following the protocol.
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Security:
I R

π,ε−→ S, if there exist simulators
σ = {σi}i∈I such that,

∀P ⊆ I, d(πPφPR, σI\PψPS) ≤ ε.

I Interface set, e.g., I = {A,B,E}.
φ, ψ filters on dishonest functionalities.
R, S resources.
π, σ converters (protocol and simulator).
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