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Although the measurement-device-independent quan-
tum key distribution(MDI-QKD) [1–5] is immune to all
the detection attacking, when the practical weak coher-
ent source is used, he decoy state method must be used
to defeat the photon-number-splitting (PNS) attack. Re-
cently, the security of the decoy state MDI-QKD has
been considered by many researchers [1, 4, 6–8]. How-
ever, there still exists some disadvantages for theirs re-
sults. In Ref.[1], infinitely many decoy states are needed,
which is impractical due to the limited resource in prac-
tical situations. In Ref.[4, 6, 7], the authors consid-
ered the effect of the finite-size data and a finite number
of decoy states, but they estimate the contribution of
single-photon pulses by solving the nonlinear minimiza-
tion problem, but not giving general formulas liking the
regular decoy state QKD, furthermore, in their method,
four states (vacuum+two-weak decoy state) are needed
to close to the asymptotic limit of infinitely decoy states.
Therefore, a more stringent security bound and the gen-
eral theory of decoy state MDI-QKD is imperative.
In this paper, we discuss the decoy state MDI-QKD

with vacuum+weak decoy state, in which both Alice and
Bob use three kinds of state with different intensity (one
signal state, one decoy state and one vacuum state).
Then we derive general formulas to estimate the yield
Y11 and error rate e11 for the fraction of signals in which
both Alice and Bob send single photon pulse to Charlie.
The numerical simulations show that our formulas are
very tight, and our vacuum+weak decoy state method
asymptotically approaches to the theoretical limit of the
infinite decoy state method.
The definitions used in this paper are listed below:
(1)We assume the intensities of signal state, decoy

state and vacuum for Alice (Bob) are µ2, µ1 and µ0 ≡ 0
(ν2, ν1 and ν0 ≡ 0). Here we assume µ2 > µ1 > 0 and
ν2 > ν1 > 0.
(2)Alice and Bob randomly chooses her basis from ω =

{x, z} and bit from {0, 1}.
(3)Qω

µiνj (Eω
µiνj ) is the total gain (error rate) when

Alice’s intensity is µi, Bob’s intensity is νj .
(4)Y ω

nm (eωnm) is the yield (error rate) when Alice (Bob)
sends n-photon (m-photon) pulse.
With these parameters, Alice and Bob can estimate
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the final key rate, which is given by [1, 6]

R ≥ µ2ν2e
−µ2−ν2Y z

11[1−H(ex11)]−Qz
µ2ν2fH(Ez

µ2ν2), (1)

where f is the error correction inefficiency, H(x) is the
binary Shannon entropy function.
In the following, we give two tight formulas to bound

Y ω
11 and eω11, which are the main contributions of this

paper.
Theorem 1: The lower bound of of Y ω

11 is given by

Y ω
11 ≥ Y ω

11 ≡
gω1 + gω2 + gω3 − eµ2+ν2Qω

µ2ν2 + eµ1+ν1Qω
µ1ν1

µ1ν1 − µ2ν2 + αµ2ν1 + αµ1ν2
.

(2)

where ω = z, x, α = min{a, b, c}, a =
µ2ν
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, and g1 = eν2Q0ν2 +

eµ2Qµ20 − eν1Q0ν1 − eµ1Qµ10, g2 = α(eµ2+ν1Qµ2ν1 −
eν1Q0ν1−eµ2Qµ20+Q00), g3 = α(eµ1+ν2Qµ1ν2−eν2Q0ν2−
eµ1Qµ10 +Q00).
Theorem 2: The upper bound of eω11 can be written

as

eω11 ≤ eω11 ≡
eµ1+ν1Qω

µ1ν1E
ω
µ1ν1 − gω4

µ1ν1Y ω
11

, (3)

where ω = z, x, and g4 = eν1Q0ν1E0ν1 + eµ1Qµ10Eµ10 −
Q00E00.
When Eve is absent, the total gains and error rates of

Alice’s intensity µi and Bob’s intensity νj are given by
[4, 6]Qx

µiνj = 2y2[1+2y2−4yI0(s)+I0(2s)], Q
x
µiνjE

x
µiνj =

e0Q
x
µiνj − 2(e0 − ed)y

2[I0(2s) − 1], Qz
µiνj = QC + QE ,

Qz
µiνjE

z
µiνj = edQC + (1 − ed)QE , where QC = 2(1 −

Pd)
2e−µ′/2[1− (1−Pd)e

−ηaµi/2]× [1− (1−Pd)e
−ηbνj/2],

QE = 2Pd(1 − Pd)
2e−µ′/2[I0(2x)− (1− Pd)e

−µ′/2]. And
I0(x) is the modified Bessel function of the first kind, ed is
the misalignment-error probability, e0 = 1/2 is the error
rate of background, Pd is the dark count of single photon
detector, ηa (ηb) is the transmission of Alice (Bob), and

µ′ = ηaµi + ηbνj , s =
√
ηaµiηbνj/2, y = (1 − Pd)e

µ′/4.
Submitting these parameters into Eq.2 and Eq.3, we can
estimate the lower bound of yield Y z

11 and upper bound
of error rate ex11, which are shown in Fig.1(b) and (c)
respectively, which clearly shows that our vacuum+weak
decoy state method is very close to the asymptotic limit
of the infinite decoy state method. Then, with these
parameters, we can estimate the key rate, which is shown
in Fig.1(a). It clearly shows that the key rate with our
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FIG. 1: (Color online) The key rate of decoy state MDI-
QKD. The solid line is obtained for the infinite decoy state
method, in which the exactly Y z

11 and ex11 are known. The
dot-dashed line is obtained for our vacuum+weak decoy state
method. The key rate is maximized by optimizing the inten-
sity of pulse. The same parameters as Ref.[6] are used in our
simulations, which are ed = 1.5%, Pd = 3× 10−6, f = 1.16.

method is also very close to the asymptotic limit of the
infinite decoy state method.

In summary, we discuss the decoy state MDI-QKD
with vacuum+weak decoy state. Then we derive gen-
eral formulas to estimate the yield and error rate for the
fraction of signals in which both Alice and Bob send sin-
gle photon pulse to Charlie. The numerical simulations
show that our formulas are very tight, and our method
with vacuum+weak decoy state method asymptotically
approaches to the theoretical limit of the general decoy
state method (with an infinite number of decoy states).
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