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Goal: Security from basic physical principles!

1. State Assumptions

(have they already been successfully attacked, e.g. fair sampling?)

2. Formalize Security v
(there is almost universal agreement on how to do this for QKD)

3. Prove security using the laws of quantum mechanics
applied to the formalized protocol/assumptions (V')

(many techniques are known, we add one more in this talk)

4. Is the protocol feasible?

(using current technology, does the protocol ever output something non-trivial?)

There does not currently exist a protocol/proof for ¢
which both 1. and 4. have a satisfactory answer.
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presume the existence of a measurement result /
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LExample: Errors vs. Fair Sampling

How do we deal with lost signals?

Often, this issue is completely ignored — theorists }
presume the existence of a measurement result / |
experimentalists presume that the security proof

survives if one just applies it to the measured signals. i
R —— :

Solution Assumption Feasibility

Ignore them! fair sampling | key is produced

Randomize! none too many errors
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However, low key rate and error tolerance! <
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Interesting approaches:

eRestrict adversary, e.g. no long-term memory (Pironio et al.)

e Allow some device assumptions: measurement device independent
QKD (Lo/Curty/Qi, Braunstein/Pirandola), one-sided device
independent QKD

A We show that 8884 IS one-sudeddevuce mdependem‘
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Heisenberg

It is impossible that both the position X
and the momentum p are fully determined.

Many different formalizations of this <

statement have been proposed. ;



¥
kThe Uncertainty Principle

Example: Polarization in X and Z direction



¥
LThe Uncertainty Principle

Example: Polarization in X and Z direction

7

./" l’-‘

_.4&' N

It is impossible to predict, with high probability, the
outcomes of polarization measurements in both directions.
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It is impossible to predict, with high probability, the
outcomes of polarization measurements in both directions.

More For‘mally: pguess(X) pguess(Z) < 1 \/§
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A
<
® C
¢ The more A is entangled with B, the less it can be with C .
¢ And vice versa.

€ As given above: is a qualitative statement.
¢ Exist different quantitative statements.

€ Part of our contribution:
® new way to get a quantitative statement
® with applications to quantum crypto
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(Game Master)

‘
A
Set up ¢
¢ A=A1...An: n qubits
¢ B &C: arbitrary many qubits

¢ joint state of ABC : arbitrary )
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ALICE: /
& chooses random q=(qzi,...,qn) € {+,X}",
® measures A1...An in respective bases qi,...,qn -> X € {0,1}",

® sends  to BOB and CHARLIE ]
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A
Set up: ¢
¢ A=A1...An: n qubits
¢ B &C: arbitrary many qubits

ﬁ R & joint state of ABC : arbitrary

Q:;_e = i = BOB and CHARLIE: i
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ALICE: {

& chooses random q=(qzi,...,qn) € {+,X}", |

® measures Ai...An in respective bases qi,...,qn -> X € {0,1}", &

® sends  to BOB and CHARLIE ]
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¢ B &C: arbitrary many qubits
ﬁ R & joint state oF ABC : arbitrary
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&) x BOB and CHARLIE:

4
BOB and CHARLIE jointly win if: —-—-—.4

both X’ =X and X" =X.
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ALICE:

{
® chooses random q=(qi,...,qn) € 1+, X},
® measures Ai...An in respective bases qi,...,qn -> X €{0,1}",

® sends  to BOB and CHARLIE
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ALICE t, ¢ Due to uncertainty principle:
(ST M“s*e") - fresh randomness in X

ﬁ R ¢ If A & B are fully entangled:

- can achieve X' =X
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- CHARLIE has a hard time
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Thus, we expect:
P e e R A = X0

initial states

measuremen ts
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Remarks:

& Bound is flgh'l' (i.e., pwin(n) e )
® Strong parallel repetition: pwin(n) = pwin(1)"

¢ Is attained without any entanglement
=> monogamy completely Kills power of entanglement
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1
Formally: pwin(n) ;== max —
Y: Pwin(n) {P9} {Q} 2"

> H|lz)z|H® © P} ® QF
0~

Theorem:

Proof:
® very simple
® New operator-norm inequality: bounds [|3; Oi|| for
positive operators O1,...,0n in terms of ||/Oi /Ojl| .
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¢ Arbitrary (and arbitrary many) measurements for Alice

¢ Relaxed winning condition for Bob and/or Charlie,
Les 6 = Candoe = o Xaacand o =)
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| Main Application Result

Theorem (informal): Standard BB84 QKD remains secure
even if Bobs measurement device is malicious.

Remarks:
& Referred to as: one-sided device-independent security
& Was claimed before, but no correct proof was given

In the proof:
& We analyze EPR-pair bases version of BB84
& Well known fo imply security for standard BB84 QKD
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¢ Monogamy game = P[X'=X A X" =X] < e
= P[X’~X] <e"2 (and thus Plabort] = 1) V'
or PIX”"=X|X"=X] < e"? v measurement of E
not abort
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analysis

Reichhardt et Vazirani/ this work
al=Edu9ils) Viddick (E91) | (BB84/BBM92)
device trusted Alice
: none none
assumptions (source)
noise tolerance 0% 20 1.5% (11%)
key rate 0% 2:0% 22.8% (100%)
finite key
5 X v
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| Summary

¢ Capture "monogamy of entanglement” by a game
¢ Analyze this monogamy game, and show:

® winning probability is exponentially small

® strong parallel repeftition in some cases

¢ Application I: to BB84 QKD
® allow a malicious measurement device for Bob
& extremely simple proof

¢ Application II: to position-based quantum crypto
¢ first 1-round position-verification scheme
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