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(have they already been successfully attacked, e.g. fair sampling?)

2. Formalize Security ✓
(there is almost universal agreement on how to do this for QKD)

3. Prove security using the laws of quantum mechanics 
applied to the formalized protocol/assumptions (✓)
(many techniques are known, we add one more in this talk)

4. Is the protocol feasible?
(using current technology, does the protocol ever output something non-trivial?)

There does not currently exist a protocol/proof for 
which both 1. and 4. have a satisfactory answer.
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We show that BB84 is one-sided device independent



 The Uncertainty Principle



 The Uncertainty Principle

p

x



 The Uncertainty Principle

p

x

Heisenberg

    It is impossible that both the position x
    and the momentum p are fully determined.



 The Uncertainty Principle

p

x

Heisenberg

    It is impossible that both the position x
    and the momentum p are fully determined.



 The Uncertainty Principle

p

x

Heisenberg

    It is impossible that both the position x
    and the momentum p are fully determined.

Many different formalizations of this 
statement have been proposed.
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It is impossible to predict, with high probability, the 
outcomes of polarization measurements in both directions.

Example: Polarization in X and Z direction

More formally: pguess(X) + pguess(Z)  1 +
1p
2
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As given above: is a qualitative statement. 
Exist different quantitative statements. 
Part of our contribution: 

new way to get a quantitative statement
with applications to quantum crypto
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q
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BOB and CHARLIE jointly win if:
 both x′ = x and x′′ = x .
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ALICE
(Game Master)

BOB CHARLIE
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B C

q

x

q q

x′′x′

Due to uncertainty principle: 
 - fresh randomness in x

If A & B are fully entangled: 
 - can achieve x′ = x

By monogamy: 
 - A & C are not entangled
 - CHARLIE has a hard time

Thus, we expect:

initial states
&

measurements

pwin(n) := max P [X 0
=X ^ X 00

=X] ⇡ 0
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Proof:
very simple
New operator-norm inequality: bounds ||∑i Oi || for 
positive operators O1,...,On in terms of ||√Oi √Oj || .
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Relaxed winning condition for Bob and/or Charlie, 
i.e., x′ ≈ x and x′′ ≈ x , or x′ ≈ x and x′′ = x .
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Theorem (informal): Standard BB84 QKD remains secure 
even if Bob’s measurement device is malicious.

 Main Application Result

Remarks:
Referred to as: one-sided device-independent security 
Was claimed before, but no correct proof was given

In the proof:
We analyze EPR-pair bases version of BB84
Well known to imply security for standard BB84 QKD 
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Comparison with other protocols

Reichhardt et 
al. (E91)

Vazirani/
Viddick (E91)

this work
(BB84/BBM92)

device 
assumptions none none  trusted Alice 

(source)

noise tolerance 0% 1.2% 1.5% (11%)

key rate 0% 2.5% 22.8% (100%)

finite key 
analysis × × ✓
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Capture “monogamy of entanglement” by a game
Analyze this monogamy game, and show: 

winning probability is exponentially small
strong parallel repetition in some cases

 Summary

Application I: to BB84 QKD
allow a malicious measurement device for Bob
extremely simple proof

Application II: to position-based quantum crypto
first 1-round position-verification scheme
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