# Quantum cloning bound and application to quantum key distribution

Erik Woodhead

Laboratoire d'Information Quantique, Université Libre de Bruxelles

Erik.Woodhead@ulb.ac.be

# **Intoduction:** no-cloning

### **Background and preliminaries**

The original intuition behind quantum key distribution was the no-cloning theorem, which implies that an eavesdropper can never perfectly clone arbitrary quantum states and will always introduce visible errors in any attempt to do so.

## State imprecisions on Alice's side

In a realistic setting, no physical source can prepare BB84 states with perfect precision. Thus one must be able to handle a source emitting states that deviate slightly from ideal BB84 states. This is one issue practical security proofs must account for.

In these cases, the cloning bound (3) no longer applies and must be generalised.

#### Arbitrary source states





 $D(\rho_{\rm E}, \rho_{\rm E}')^2 + D(\sigma_{\rm B}, \sigma_{\rm B}')^2 \le 1$ , (2)

which appeared as an intermediate result in their security proof of the BB84 protocol against individual attacks.

• A generalisation for arbitrary unitary cloners was effectively derived by Fuchs *et al.* in 1997 [1]:

#### **Results:** outline

• We propose a strengthened version of (2), in which the trace distance is replace with the fidelity on Eve's side:

 $F(\rho_{\rm E}, \rho_{\rm E}') \ge D(\sigma_{\rm B}, \sigma_{\rm B}')$ . (3)

# (where: $F(\rho, \sigma) \equiv \|\sqrt{\rho}\sqrt{\sigma}\|_{1}$ .)

(where:  $D(\rho, \sigma) \equiv \frac{1}{2} \|\rho - \sigma\|_1$ .)

(Proof idea: note that  $D(\sigma_{\rm B}, \sigma'_{\rm B}) = \frac{1}{2} \operatorname{Tr}[(U_{\rm B} \otimes \mathbb{1}_{\rm E})X]$  where  $X = |0\rangle\langle 1| + |1\rangle\langle 0|$  for some Hermitian unitary  $U_{\rm B}$ , note that  $|0\rangle$  and  $(U_{\rm B} \otimes \mathbb{1}_{\rm E})|1\rangle$  are purifications of  $\rho_{\rm E}$  and  $\rho'_{\rm E}$ , use Uhlmann's theorem.)

- We show that this cloning bound can be applied to a simple security proof of the BB84 protocol against collective attacks.
- Our results furthermore generalise to account for imperfections in Alice's box ultimately to the case where Alice's box emits four arbitrary pure qubit states.

Illustration: simple key-rate derivation for BB84

The cloning bound (3) is useful because it applies to a straightforward security proof of BB84 against collective attacks:

•  $D(\sigma_{\rm B}, \sigma'_{\rm B})$  is readily estimated by Alice and Bob in terms of the (x-basis) error rate  $\delta_x$ :

# **Relation to existing results**

#### The key rate (9) is ...

#### • similar to a key rate derived by Marøy et al. [2], and

• an improvement over the key rate predicted by the uncertainty relation [3] (where a comparison can be made).

A comparison of key rates for  $\theta = 1.2 \, \text{rad}$ , corresponding to a deviation of around  $21^{\circ}$ , and with symmetric errors ( $\delta_x = \delta_z \equiv \delta$ ) is illustrated on the figure below (for an orthogonal qubit basis source).



$$D(\sigma_{\rm B}, \sigma_{\rm B}') \ge |1 - 2\delta_x|$$
.

(Helstrom bound.)

• The asymptotic secret key rate, secure against collective attacks, is readily bounded in terms of  $F(\rho_{\rm B}, \rho_{\rm B}')$ :

 $r \ge 1 - h(\frac{1}{2} + \frac{1}{2}F(\rho_{\rm E}, \rho_{\rm E}')) - h(\delta_z),$ (5)

(4)

where  $h(x) \equiv -x \log(x) - (1-x) \log(1-x)$ , and  $\delta_z$  is the z-basis error rate. (Proof idea: apply Devetak-Winter bound  $r \ge H(Z \mid E) - H(Z \mid Z')$ , replace  $\rho_E$ ,  $\rho'_E$  with purifications  $|\Psi\rangle$ ,  $|\Phi\rangle$  such that  $|\langle\Psi|\Phi\rangle| = F(\rho_{\rm E}, \rho_{\rm E}')$  in evaluation of  $H(Z \mid {\rm E})$ .)

• Applying (3) and (4) to (5), we immediately recover the Shor-Preskill bound:

$$r \ge 1 - h(\delta_x) - h(\delta_z) \,. \tag{6}$$

It is worth noting that this result is (mostly) device-independent on Bob's side – this comes from the use of the Helstrom bound above.

#### $0.07 \delta$ |0|

Above: 1) key rate derived from the uncertainty relation, 2) equation (9), and 3) improved key rate bound if Bob's Hilbert space is restricted to dim = 2. The threshold error rates are  $\delta_0 \approx 4.78$  %, 6.02 %, and 6.84 %.

# References

[1] C. A. Fuchs, N. Gisin, R. B. Griffiths, C.-S. Niu, and A. Peres, Phys. Rev. A 56, 1163–1172 (1997). [2] Ø. Marøy, L. Lydersen, and J. Skaar, Phys. Rev. A 82, 032337 (2010). [3] M. Tomamichel and R. Renner, Phys. Rev. Lett. **106**, 110506 (2011).

Article ref: E. W., Phys. Rev. A 88, 012331 (2013).