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1972  Freedman & Clauser 
 
Closing locality loophole 

1982  Aspect, Dalibard, Roger 

1998    Tittel et al. 10km  
  Weihs et al. Einstein locality 

2010  Scheidl et al. PNAS ‘Freedom of choice’ loophole 



SPOOKY ACTION AT A DISTANCE ? 

Salart et al. Nature 2008 

events, for which jrj< 1: the bound on VQI in equation (1) will then be
larger than c. For a given privileged frame F, this bound depends on the
orientation of the A–B axis through bjj and on the alignment r. To
obtain a good lower bound for VQI, we should bound the term
(r 1 bjj)

2 from above by the smallest possible value, during a period
of time T needed to observe a Bell violation (which, in our experiment,
will be the integration time of a two-photon interference fringe).

To gain some intuition, we first consider the simple case in which
r 5 0 (the two events are perfectly simultaneous in the Earth frame)
and the A–B axis is perfectly aligned in the east–west direction. Then,
when the Earth rotates, there will be a moment t0 when the east–west
direction is perpendicular to v, that is, bjj(t0) 5 0. During a small time
interval around t0, we can bound jbjj(t)j by a small value, and thus
obtain a high lower bound for VQI.

In principle, the alignment r could be optimized for each privi-
leged frame that we wish to test, so as to decrease the bound that can
be put on (r 1 bjj)

2 during the time interval T (and increase the term
(1 2 r2) at the same time). In our experiment, however, because we
want to scan all possible frames, we do not optimize r for each frame;
instead, we align the detection events such that jrj# !rr= 1, where !rr
is our experimental precision on the alignment r. We then use the
fact that (1{r2)=(rzbjj)

2§(1{!rr2)=(!rr zjbjjj)2 to get the follow-
ing bound:

VQI

c

! "2

§1z
(1{b2)(1{!rr2)

(!rr zjbjjj)2 ð2Þ

The problem reduces to bounding jbjjj directly.
In the configuration of our experiment, the A–B axis is almost, but

not perfectly, oriented along the east–west direction. Consequently,
the component bjj(t) has a 24-hour period, and geometric considera-
tions show that it can be written as (see the Supplementary
Information)

bjj(t)~b cos x sin azb sin x cos a cos vt

where x is the zenith angle of v, a is the angle between the A–B axis
and the equatorial x–y plane (Fig. 1), and v is the angular velocity of
the Earth.

As we show in the Supplementary Information, in order to bound
jbjjj from above during a period of time T, we can consider two cases:
one in which v does not point close to a pole (CTjtanxj> jtanaj), and
one in which it does (CTjtanxj# jtanaj). Here CT 5 cos2(vT/4),
which ,1 when vT is small. There exists a time interval of length
T during which jbjj(t)j is bounded from above by

jbj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 x cos2 a{ cos2 x sin2 a

q
vT

2

in the first case and by

jbj j cos x sin aj{j sin x cos aj cos
vT

2

! "

in the second case. These bounds, together with equation (2), provide
the desired lower bound for VQI.

We now describe our experiment. In essence it is a large Franson
interferometer16. A source situated in our laboratory in Geneva emits
entangled photon pairs using the standard parametric down-conver-
sion process in a nonlinear crystal (here a continuous-wave laser
pumps a waveguide in a periodically poled lithium niobate crystal)17.
Using fibre Bragg gratings and optical circulators, each pair is deter-
ministically split and one photon is sent through the Swisscom fibre
optic network to Satigny, a village west of Geneva, and the other
photon is sent to Jussy, a village east of Geneva. The two receiving
stations, located in those two villages, are separated by a direct dis-
tance of 18.0 km (Fig. 2). We use energy–time entanglement, a form
of entanglement well suited to quantum communication in standard
telecommunications fibres18. At each receiving station, the photons
pass through identically unbalanced fibre-optic Michelson interfe-
rometers. The imbalance (,25 cm) is larger than the single-photon
coherence length (,2.5 mm), meaning that any single-photon inter-
ference is avoided, but is much smaller than the pump laser coher-
ence length (>20 m). Accordingly, when a photon pair is detected
simultaneously in Satigny and Jussy, there is no information about
which path—the long arm or the short arm—the photons took in
their interferometers. But because the photons were also emitted
simultaneously, they must both have taken the same long or short
path. This indistinguishability leads, as always in quantum physics, to
interference between the long–long and short–short paths.
Continuously scanning the phase in one interferometer (at Jussy),
while keeping the other one stable, produces a sinusoidal oscillation
of the correlation between the photon detections at Satigny and Jussy
(Fig. 3). The phases were controlled by the temperature of the fibre-
based interferometers.
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Figure 1 | Reference frames. The Earth frame moves with respect to a
hypothetically privileged reference frame F at a speed v. The zenith angle x
between v and the z axis can have values between 0u and 180u. The A–B axis
forms an angle a with the equatorial (x–y) plane. v, angular velocity of the
Earth.
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Figure 2 | Experimental setup. The source sends pairs of photons from
Geneva to two receiving stations through the Swisscom fibre-optic network.
The stations are situated in two villages, Satigny and Jussy, that are
respectively 8.2 and 10.7 km from Geneva. The direct distance between them
is 18.0 km. At each receiving station, the photons pass through identically
unbalanced Michelson interferometers and are detected by a single-photon
InGaAs avalanche photodiode (APD) (id201, id Quantique). The length of
the fibre going to Jussy is 17.5 km. The fibre going to Satigny is only 13.4 km
long, so we added a fibre coil of 4.1 km (represented as a loop) to equalize the
lengths of the fibres. Having fibres with the same length allows us to satisfy
the condition of good alignment (r= 1). d indicates the scanning of the
phase of the interferometer at Jussy.
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Interference fringes were recorded in many runs, which usually
lasted several hours (up to 15 hours for the longest run (see Fig. 4)).
By juxtaposing several of these measurement runs obtained over
several weeks, we covered a 24-hour period with interference fringe
periods of T 5 360 s with visibilities well above the threshold (1/!2)
set by the Clauser–Horne–Shimony–Holt Bell inequality19. The vis-
ibility is large enough to exclude any common-cause explanation.
The correlations are thus due either to entanglement, as predicted by
quantum physics, or to some hypothetical spooky action at a distance
whose speed we wish to bound from below. Because long measure-
ments of fringes with short fringe periods T are difficult to fit con-
tinuously, we fitted the data over a time window corresponding to
one-and-a-half fringes and scanned this time window, as explained in
the Supplementary information.

The violation of the Bell inequality at all times of day makes it
possible to calculate the lower bound for the speed of quantum
information in any reference frame. This bound depends on the

precision of the alignment in the actual experiment; see equation
(2). We wished to have a good alignment (r= 1), so the difference
in the arrival times of the single photons tAB was minimized.

First, the length of each fibre between the source and the single-
photon detectors was measured. The long fibres (several kilometres in
length) were measured using a single-photon optical time-domain
reflectometer20 and the short fibres (less than 500 m in length) were
measured using an optical frequency-domain reflectometer21. The
fibre on the Satigny side was found to be shorter than the other by
4.1 km. We added a fibre coil to the short side (represented as a loop in
Fig. 2), reducing this difference to below 1 cm with an uncertainty of
1 cm, which corresponds to a light travel time of 49 ps. To remove any
doubt about where exactly the measurement took place, we adjusted
the lengths of the fibres from the source to the fibre couplers inside
each interferometer and also to the photodiodes (where the photons
are detected). Hence, the configuration was totally symmetric.

Next, we considered the chromatic dispersion in the fibres.
Chromatic dispersion added an uncertainty in the arrival times,
and because the entangled photons were anticorrelated in energy,
their time delays were always opposite to each other, which always
increased this uncertainty. Chromatic dispersion was measured to be
18.2 ps nm21 km21 using a chromatic dispersion analyser22. For a
spectral half-width of Dl 5 0.5 nm and twice the distance of
17.5 km, this is equivalent to a 319-ps uncertainty. Thus, the overall
uncertainty in the relative lengths of the fibres was, when expressed in
light travel time, tAB 5 323 ps. This, together with the direct distance
between the receivers, rAB 5 18.0 km, allowed us to estimate the pre-
cision of our alignment: jrj# !rr 5 5.4 3 1026= 1.

Last, we used equation (2) to calculate a lower bound for VQI. We
used the value of !rr just calculated, the period of time T 5 360 s needed
to observe a Bell violation (corresponding to the interference fringe
period), and the angle formed by the axis between the two receiving
stations (the A–B axis) and the equatorial (x–y) plane, a 5 5.8u. The
results are shown in Fig. 5, for certain hypothetically privileged frames.
In Fig. 5a, we scan all possible directions x, but set the Earth’s relative
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Figure 3 | Interference fringes. Interference fringes with a period T 5 900 s
obtained during a 4-hour measurement, fitted with a sinusoidal function
yielding a visibility of 87.6% 6 1.1%. If we subtract the accidental
coincidences, the (net) visibility climbs to 94.1% 6 1.0%. This result is
significant because the period of the interference fringes remains stable for a
very long time, which allows us to fit the entire measurement with a
continuous fit and obtain a high visibility value.
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Figure 4 | Visibility fits. Visibility fits for several uninterrupted runs
obtained at different times of the day. Together these runs cover each
moment of the day at least twice. The limitations on the lengths of these
measurements were due to the end of the cooling ramp and small
instabilities in the set-up that produced short interruptions in the scan.
Visibility values remain above the threshold value of 1/!2 (black line) set by
the Clauser–Horne–Shimony–Holt Bell inequality at all times.
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discussed in the text, whereas for a= x= 180u2 a, the bound is obtained
by considering the first case. The bound at x 5 90u is VQI $ 54,000c.
b, Bound obtained for VQI/c as a function of the speed b, for x 5 90u. As b
tends to zero, our bound on VQI/c tends to 1/!!!.
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without making further assumptions. The most general way to
take no-click events into account is simply to treat them as an
additional outcome and instead of a Δ-outcome Bell inequal-
ity (if the number of “conclusive” outcomes is Δ) use a
(Δþ 1)-outcome Bell inequality. A possible way to obtain an
effective (Δþ 1)-outcome Bell inequality from a Δ-outcome
one is simply to merge the no-click outcome with one of the
valid outcomes,20 i.e., systematically assign one of the valid
outcomes to the no-click events. In particular, the Clauser-
Horne inequality (Clauser and Horne, 1974), which is often
used in Bell tests with inefficient detectors, is nothing but the
CHSH inequality where the −1 outcome and the no-click
outcome ⊥ have been merged into one effective −1 outcome.
Assigning one of the valid outcomes to the no-click

outcome ⊥ is often the optimal way to treat no-click events,
although there is no general proof of this and a counterex-
ample exists for no-signaling correlations (Wilms et al.,
2008). In the case where Δ detectors are used to register
the Δ outcomes of a measurement, assigning one of the
conclusive outcomes to the no-click events has also the
technical advantage that the detector associated with that
particular outcome is no longer needed, i.e., only Δ − 1
detectors are sufficient since no distinction is being made
between obtaining the Δth outcome and not detecting
anything.

c. Threshold efficiencies

When treating the no-click outcome as described previ-
ously, one generally finds that a Bell violation is obtained only
if the detector efficiencies are above a certain threshold. The
minimal threshold efficiency η", required to close the detection
loophole, depends generally on the number of parties,
measurements, and outcomes involved in the Bell test.
Moreover, η" may also vary depending on the exact set of
correlations that is considered. Thus, in quantum Bell tests, η"

may also depend on which entangled state and which
measurement settings are considered. Next we review the
efficiency thresholds for the most important Bell inequalities
and for the most common quantum entangled states.
We start by deriving η" for the CHSH Bell inequality using

a two-qubit maximally entangled state. Performing judicious
local measurement on this state, one obtains a CHSH value of
S ¼ 2

ffiffiffi
2
p

(the maximum value possible in quantum mechan-
ics). Now, we assume that Alice and Bob have imperfect
detectors with efficiency η and that when a no-click result⊥ is
obtained, they assign to it the þ1 outcome. When both
detectors click, which happens with probability η2, Alice
and Bob achieve S ¼ 2

ffiffiffi
2
p

. When only one detector clicks, the
outcomes are completely uncorrelated leading to S ¼ 0.
Finally, when no detectors click, which happens with prob-
ability ð1 − ηÞ2, Alice and Bob both always output þ1, thus
achieving the local bound S ¼ 2. In order to close the

detection loophole, we must ensure that the entire data of
the experiment violate the CHSH inequality, i.e., that

η22
ffiffiffi
2
p
þ ð1 − ηÞ22 > 2. (92)

This leads to the condition that

η > η" ¼ 2

1þ
ffiffiffi
2
p ≈ 82:8%: (93)

Therefore, in order to get a detection loophole free CHSH
violation with a two-qubit maximally entangled state, it is
sufficient to have a detection efficiency larger than ∼82:8%
(Mermin, 1986). This efficiency is also necessary: an explicit
local model can be built which reproduces the experimental
data when η < 2=ð1þ

ffiffiffi
2
p
Þ.

Remarkably, it turns out that this threshold efficiency can be
lowered by considering partially entangled states, of the form
jψθi ¼ cos θj00iþ sin θj11i, as discovered by Eberhard
(1993). In particular, in the limit of a product state (i.e.,
θ → 0) one obtains the fact that η" → 2=3. This astonishing
result was the first demonstration that sometimes less entan-
glement leads to more nonlocality (see Sec. III.A.7).
From an experimental perspective, it is relevant to see how

the previous results are affected by the presence of back-
ground noise. In general this amounts to a considerable
increase of the threshold efficiencies. Even for very low
levels of background noise, the threshold efficiency usually
increases by a few percent. A detailed analysis can be found in
Eberhard (1993). Another point concerns events in which no
detection happened on either side. In certain cases, joint losses
are not detrimental for the demonstration of nonlocality
(Massar et al., 2002).
Beyond the CHSH case, discussed in detail by Branciard

(2011), it is known that lower threshold efficiencies can be
tolerated for Bell inequalities featuring more measurement
settings. A lower bound for the threshold efficiency is given
by

η" ≥
mA þmB − 2

mAmB − 1
; (94)

where mA (mB) denotes the number of settings of Alice (Bob)
(Massar and Pironio, 2003). While it is not known whether
this bound can be obtained in general with quantum corre-
lations, improvements over the threshold efficiencies of the
CHSH inequalities have been obtained by considering Bell
scenarios with more measurement settings. For qubit states
only minor improvements were found (Massar et al., 2002;
Brunner and Gisin, 2008; Pal and Vértesi, 2009). Massar
(2002) showed that, when considering systems of higher
Hilbert space dimension d, the threshold efficiency can
become arbitrarily close to zero. Unfortunately, this result
is of limited practical interest since improvements over the
CHSH case are obtained only for systems with d≳ 1600.
Also, the number of measurements becomes exponentially
large, namely, 2d. More recently a Bell test involving
entangled quqats (d ¼ 4) and four (binary) measurement
settings was shown to tolerate detection efficiencies as
low as ∼61:8% (Vértesi, Pironio, and Brunner, 2010).

20Inequalities obtained in this way are liftings of the original
inequality (Pironio, 2005). If the original inequality is facet defining
for the Δ-outcome Bell polytope, then the lifted inequality is facet
defining for the (Δþ 1)-outcome polytope. However, the (Δþ 1)-
outcome Bell polytope has also in general facets that cannot be
viewed as liftings of Δ-outcome inequalities.
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jψθi ¼ cos θj00iþ sin θj11i, as discovered by Eberhard
(1993). In particular, in the limit of a product state (i.e.,
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the previous results are affected by the presence of back-
ground noise. In general this amounts to a considerable
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by
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where mA (mB) denotes the number of settings of Alice (Bob)
(Massar and Pironio, 2003). While it is not known whether
this bound can be obtained in general with quantum corre-
lations, improvements over the threshold efficiencies of the
CHSH inequalities have been obtained by considering Bell
scenarios with more measurement settings. For qubit states
only minor improvements were found (Massar et al., 2002;
Brunner and Gisin, 2008; Pal and Vértesi, 2009). Massar
(2002) showed that, when considering systems of higher
Hilbert space dimension d, the threshold efficiency can
become arbitrarily close to zero. Unfortunately, this result
is of limited practical interest since improvements over the
CHSH case are obtained only for systems with d≳ 1600.
Also, the number of measurements becomes exponentially
large, namely, 2d. More recently a Bell test involving
entangled quqats (d ¼ 4) and four (binary) measurement
settings was shown to tolerate detection efficiencies as
low as ∼61:8% (Vértesi, Pironio, and Brunner, 2010).

20Inequalities obtained in this way are liftings of the original
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Therefore, in order to get a detection loophole free CHSH
violation with a two-qubit maximally entangled state, it is
sufficient to have a detection efficiency larger than ∼82:8%
(Mermin, 1986). This efficiency is also necessary: an explicit
local model can be built which reproduces the experimental
data when η < 2=ð1þ
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Remarkably, it turns out that this threshold efficiency can be
lowered by considering partially entangled states, of the form
jψθi ¼ cos θj00iþ sin θj11i, as discovered by Eberhard
(1993). In particular, in the limit of a product state (i.e.,
θ → 0) one obtains the fact that η" → 2=3. This astonishing
result was the first demonstration that sometimes less entan-
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are not detrimental for the demonstration of nonlocality
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(2011), it is known that lower threshold efficiencies can be
tolerated for Bell inequalities featuring more measurement
settings. A lower bound for the threshold efficiency is given
by

η" ≥
mA þmB − 2
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where mA (mB) denotes the number of settings of Alice (Bob)
(Massar and Pironio, 2003). While it is not known whether
this bound can be obtained in general with quantum corre-
lations, improvements over the threshold efficiencies of the
CHSH inequalities have been obtained by considering Bell
scenarios with more measurement settings. For qubit states
only minor improvements were found (Massar et al., 2002;
Brunner and Gisin, 2008; Pal and Vértesi, 2009). Massar
(2002) showed that, when considering systems of higher
Hilbert space dimension d, the threshold efficiency can
become arbitrarily close to zero. Unfortunately, this result
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4

FIG. 2: A plot of the Bell parameter B0 (Eq. 3) as a function of the produced entangled state. B0 > 1 (red line) is not possible
for any local realistic theory. Data points in black are the measured B0 as r is varied in the state (r|HHi+ |V V i) /

p
1 + r2;

r = 1 (0) corresponds to a maximally entangled (separable) state. For this plot, every data point was measured for 30 seconds
at each measurement setting; the particular settings were optimally chosen based on the model of our source for each value of
✓. The blue line represents the Bell parameter we expect from the model of our source. Here, to improve the statistics, we did
not pulse our source with the Pockels cell. We see violations for 0.20 < r < 0.33.

detectors, but belies the unprecedented quality of the experimental apparatus used to generate the state itself. We
thus reconfigured the experimental apparatus shown in Fig. 1 to produce a variety of high-purity, high-fidelity
quantum states between totally separable and maximally entangled; see Fig. 2 for a plot of the CH inequality
violation as a function of state separability When configured for maximal entanglement, the source produces a state
with 99.7± 0.05% (99.5± 0.05%) visibility in the H/V (H+V/H-V) basis, and a canonical CHSH Bell violation [28] of
2.827± 0.017–within error of the maximum violation allowed by quantum mechanics (2

p
2 ⇡ 2.828). These values are

on par with the highest reported violations of Bells inequality ever reported [29], but unlike all previously reported
results include no accidental subtraction or post-processing of any kind. As a result, this source provides not only the
best experimental evidence to date that local realistic theories are not viable, but also provides the best test so far
of the upper limits for quantum correlations; some super-quantum theories [30] actually predict that the upper limit
for the Bell inequality can be greater than 2

p
2, a prediction constrained by the results reported here.

The high entanglement quality, along with the detection-loophole-free capability, o↵ers interesting possibilities for
applications, notably for ”device-independent” quantum information processing. Here the goal is to implement a
certain protocol, and to guarantee its security, without relying on assumptions about the internal functioning of
the devices used in the protocol. Being device-independent, this approach is more robust to device imperfections
compared to standard protocols, and is in principle immune to side-channel attacks (which were shown to jeopardize
the security of some experimental quantum cryptography systems).

One prominent example is device-independent randomness expansion (DIRE) [31–34]. By performing local mea-
surements on entangled particles, and observing nonlocal correlations between the outcomes of these measurements,
it is possible to certify the presence of genuine randomness in the data in a device-independent way. DIRE was
recently demonstrated in a proof-of-principle experiment using entangled atoms located in two traps separated by
one meter [31]; however, the resulting 42 random bits required a month of data collection! Here we show that our
setup can be used to implement DIRE much more e�ciently. The intrinsic randomness of the quantum statistics
can be quantified as follows. The probability for any observer (hence, for any potential adversary) to guess the
measurement outcome (of a given measurement setting) is bounded by the amount of violation of the CH inequality:
p
guess

 1/2(1+
p
2� (1 + 2B)2) [31], neglecting finite size e↵ects. In turn, this leads to a bound on the min-entropy

per bit of the output data, H
min

= �log2(pguess). Finally, secure private random bits can be extracted from the data
(which may in general not be uniformly random) using a randomness extractor [35]. At the end of the protocol, a
final random bit string of length L ⇡ N ⇤H

min

� S is produced, where N is the length of the raw output data, and
S includes the ine�ciency and security overhead of the extractor.

Over the 4450 measurement blocks (each block features 25,000 events), we acquire 111,259,682 data points for 3
hours of data acquisition. The average CH violation of B = 5.4x10�5 gives a min-entropy of H

min

= 7.2x10�5. Thus,
we expect 8700 bits of private randomness, of which one could securely extract at least 4350 bits [18]. The resultant
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proof-of-principle demonstration of device-independent ran-
domness expansion (Pironio et al., 2010) (see Sec. IV.C.3).

3. Hybrid schemes and other systems

Finally, we mention that Bell inequality violations have also
been reported using atom-photon entanglement (Moehring et
al., 2004) and entanglement between a photon and a collective
atomic excitation (Matsukevich et al., 2005). Nonlocality was
also demonstrated in Josephson phase superconducting
qubits. In particular, violation of the CHSH inequality was
achieved by Ansmann et al. (2009), whereas the GHZ paradox
was demonstrated by DiCarlo et al. (2010) and Neeley
et al. (2010).

B. Loopholes

1. Detection loophole

In a large class of Bell experiments, in particular, those
carried out with photons, measurements do not always yield
conclusive outcomes. This is due either to losses between the
source of particles and the detectors or to the fact that the
detectors themselves have nonunit efficiency. A measurement
apparatus, used, e.g., to test the CHSH inequality, has then
three outcomes instead of two: it can as usual give the
outcomes −1 or þ1, or it can give a “no-click” outcome,
denoted⊥. The simplest way to deal with such “inconclusive”
data is simply to discard them and evaluate the Bell expression
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pointed out by Pearle (1970) and Clauser and Horne
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under the assumption that the set of detected events is a fair
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probability to obtain a no-click outcome ⊥ depends on the
choice of measurement (Pearle, 1970; Clauser and Horne,
1974; Santos, 1992). If the detection efficiency is too low
(below a certain threshold), such local models can completely

reproduce the observed data, opening the so-called detection
loophole. The threshold efficiency required to close this
detection loophole is typically high for practical Bell tests.
As a consequence, most optical realizations of Bell tests
performed so far are plagued by the detection loophole.
Another closely related loophole is the time-coincidence

loophole (Larsson and Gill, 2004). This loophole exploits
timing issues in Bell tests, which in turn can affect detection
efficiency. Christensen et al. (2013) showed how this loophole
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achieve tasks which would be impossible without it. In
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To illustrate this idea, we see how it is possible for a local

model to fake maximal violation of the CHSH inequality. In
particular, we show how to generate Popescu-Rohrlich corre-
lations a⊕b ¼ xy, where x; y; a; b ∈ f0; 1g (see Sec. II.C.2),
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probability for Alice to obtain a conclusive outcome is 1=2,
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obtains a conclusive outcome. With additional shared random-
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Alice and Bob's detection probability is 2=3 (Massar and
Pironio, 2003). Therefore, if the detection efficiency in a
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tuses. More generally, the minimum detection efficiency
required for successfully violating a given Bell inequality
depends on the number of parties and measurements involved
(see Sec. VII.B.1.b).
Interestingly, recent experiments demonstrated fake viola-

tions of Bell inequalities using classical optics (Gerhardt et al.,
2011), positive Wigner function states and quadrature
measurements (Tasca et al., 2009), a classical amplifica-
tion scheme (Pomarico, Sanguinetti et al., 2011), and
high-dimensional analyzers (Romero et al., 2013). These
experiments are performed under the same conditions as
standard Bell experiments, but exploit side channels. This
illustrates the importance of closing the detection loophole in
Bell tests, in particular, for the perspective of implementing
device-independent protocols.

b. Taking into account no-click events

The previous discussion shows that in order to close the
detection loophole no-click outcomes cannot be discarded

FIG. 7 (color online). A Bell test based on distant entangled
atoms. Each atom is entangled with an emitted photon. Upon
successful projection of the two photons onto a Bell state, the two
atoms become entangled. The scheme is therefore “event ready,”
which makes it robust to photon losses in the channel. Moreover,
since atomic measurements have an efficiency close to 1, this
scheme is free of the detection loophole. This setup has been
implemented experimentally with a distance of 20 m between the
atoms (Hofmann et al., 2012), and used for device-independent
randomness expansion. From Pironio et al., 2010.
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Spin-photon interactions 

Heralded mapping of photonic entanglement to spins 

3

Figure 1. Setup of the experiments. (a) A pair of polarization entangled photons
is sent to two remote observers. Each photon interacts with a spin inside a
cavity. (b) Upon successful heralding, i.e. both photons detected as horizontally
polarized at the cavity’s output, the two spins are prepared in an entangled state
and the Bell test can be performed.

perspective of a loophole-free Bell experiment, and more specifically of achieving detection-
loophole-free Bell violations on long distances, is essential for implementing protocols such as
DI-QKD.

Here we present a scheme for a loophole-free Bell test based on Faraday-type spin–photon
interactions in cavities [26–28]. Our setup is hybrid, using both photons and ‘atomic’ systems,
hence combining the best of both worlds. Using spin–photon interactions, the entanglement
between two photons can be swapped to two atomic systems in cavities. Importantly this
can be realized in a heralded way via the detection of the photons after interaction with
the cavities, even in the weak coupling regime. Once the creation of an entangled pair is
heralded, the measurement settings for the Bell test are generated. In this way the setup, being
‘event-ready’, is basically insensitive to the losses in the optical channel between Alice and
Bob. Moreover, since spin measurements have efficiency close to unity, the setup is immune
to the detection loophole. These features make our scheme particularly well adapted to the
implementation of DI-QKD. In the following we start by presenting a simple theoretical model
of our setup, estimating the effect of technical imperfections such as the amplitude of the
spin–photon interaction and the decay rate of the atomic system in the cavity. Then, we discuss
the implementation of our scheme in various platforms, including negatively charged nitrogen
vacancy centres (NV�) in diamond, quantum dot spin systems and atoms. Finally, we discuss
the implementation of DI-QKD based on our setup.

2. Setup

The setup is sketched in figure 1. A pair of polarization entangled photons is emitted by a central
source and sent to two remote observers, Alice and Bob. The photons are in the singlet state

| �iAB = 1p
2
(|R, Li � |L , Ri), (1)

New Journal of Physics 15 (2013) 105006 (http://www.njp.org/)

Sangouard et al. NJP 2013 
Brunner et al. NJP 2013 

Relevant for atoms, NV centres, Q dots 
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FIG. 1: Relation between different fundamental manifesta-
tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
false, it would remain to be seen whether negativity under partial
transposition implies Bell nonlocality.

tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form

% =
4X

i=1

�

i

| 
i

ih 
i

| (1)

of local Hilbert space dimension d = 3. The eigenvalues �
i

and eigenvectors | 
i

i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
T

B

)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =
Z

d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:

I = �p

A

(0|2)� 2p
B

(0|1)� p(01|00)� p(00|10)
+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely

I

%

' 2.63144⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2. 6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4. 8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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FIG. 1: Relation between different fundamental manifesta-
tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
false, it would remain to be seen whether negativity under partial
transposition implies Bell nonlocality.

tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form

% =
4X

i=1

�

i

| 
i

ih 
i

| (1)

of local Hilbert space dimension d = 3. The eigenvalues �
i

and eigenvectors | 
i

i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
T

B

)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =
Z

d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:

I = �p

A

(0|2)� 2p
B

(0|1)� p(01|00)� p(00|10)
+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely

I

%

' 2.63144⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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FIG. 1: Relation between different fundamental manifesta-
tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
false, it would remain to be seen whether negativity under partial
transposition implies Bell nonlocality.

tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form

% =
4X

i=1

�

i

| 
i

ih 
i

| (1)

of local Hilbert space dimension d = 3. The eigenvalues �
i

and eigenvectors | 
i

i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
T

B

)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =
Z

d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:

I = �p

A

(0|2)� 2p
B

(0|1)� p(01|00)� p(00|10)
+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely

I

%

' 2.63144⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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FIG. 1: Relation between different fundamental manifesta-
tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
false, it would remain to be seen whether negativity under partial
transposition implies Bell nonlocality.

tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form

% =
4X

i=1

�

i

| 
i

ih 
i

| (1)

of local Hilbert space dimension d = 3. The eigenvalues �
i

and eigenvectors | 
i

i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
T

B

)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =
Z

d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:

I = �p

A

(0|2)� 2p
B

(0|1)� p(01|00)� p(00|10)
+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely

I

%

' 2.63144⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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FIG. 1: Relation between different fundamental manifesta-
tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
false, it would remain to be seen whether negativity under partial
transposition implies Bell nonlocality.

tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form

% =
4X

i=1

�

i

| 
i

ih 
i

| (1)

of local Hilbert space dimension d = 3. The eigenvalues �
i

and eigenvectors | 
i

i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
T

B

)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0 , 1}. Alice’s settings yield a binary outcome,
a 2 {0 , 1}. Bob’s first setting ( y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting ( y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p ( a b | x y ). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p ( a b | x y ) =

Z
d �µ (�) p ( a | x �) p ( b | y �) (2)

where � represents the shared local variable distributed ac-
cording to the density µ (�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:

I = � p

A

(0|2)� 2p

B

(0|1)� p (01|00)� p (00|10)
+ p (00|20) + p (01|20) + p (00|01) (3)
+ p (00|11) + p (00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p ( a b | x y ) = Tr(%M

a|x ⌦ M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely

I

%

' 2. 63144⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2. 6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4. 8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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FIG. 1: Relation between different fundamental manifesta-
tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
false, it would remain to be seen whether negativity under partial
transposition implies Bell nonlocality.

tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form

% =
4X

i=1

�

i

| 
i

ih 
i

| (1)

of local Hilbert space dimension d = 3. The eigenvalues �
i

and eigenvectors | 
i

i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
T

B

)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =
Z

d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:

I = �p

A

(0|2)� 2p
B

(0|1)� p(01|00)� p(00|10)
+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely

I

%

' 2.63144⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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FIG. 1: Relation between different fundamental manifesta-
tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
false, it would remain to be seen whether negativity under partial
transposition implies Bell nonlocality.

tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form

% =
4X
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| (1)

of local Hilbert space dimension d = 3. The eigenvalues �
i

and eigenvectors | 
i

i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
T

B

)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =
Z

d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:

I = �p

A

(0|2)� 2p
B

(0|1)� p(01|00)� p(00|10)
+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely

I
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' 2.63144⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
false, it would remain to be seen whether negativity under partial
transposition implies Bell nonlocality.

tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form
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i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
T

B

)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =
Z

d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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(0|2)� 2p
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(0|1)� p(01|00)� p(00|10)
+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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' 2.63144⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
false, it would remain to be seen whether negativity under partial
transposition implies Bell nonlocality.

tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form
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of local Hilbert space dimension d = 3. The eigenvalues �
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and eigenvectors | 
i

i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
T

B

)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0 , 1}. Alice’s settings yield a binary outcome,
a 2 {0 , 1}. Bob’s first setting ( y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting ( y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p ( a b | x y ). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p ( a b | x y ) =
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where � represents the shared local variable distributed ac-
cording to the density µ (�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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+ p (00|20) + p (01|20) + p (00|01) (3)
+ p (00|11) + p (00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p ( a b | x y ) = Tr(%M

a|x ⌦ M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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' 2. 63144⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2. 6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4. 8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
false, it would remain to be seen whether negativity under partial
transposition implies Bell nonlocality.

tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form
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of local Hilbert space dimension d = 3. The eigenvalues �
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and eigenvectors | 
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i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
T

B

)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =
Z

d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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B

(0|1)� p(01|00)� p(00|10)
+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely

I

%

' 2.63144⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum

2

Bell"Nonlocality" Nega&ve"Par&al"
Transpose""

Entanglement"
Dis&llability"

?"

?"

FIG. 1: Relation between different fundamental manifesta-
tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
false, it would remain to be seen whether negativity under partial
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form

% =
4X

i=1

�

i

| 
i

ih 
i

| (1)

of local Hilbert space dimension d = 3. The eigenvalues �
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and eigenvectors | 
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i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
T

B

)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =
Z

d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:

I = �p

A

(0|2)� 2p
B

(0|1)� p(01|00)� p(00|10)
+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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' 2.63144⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum

Mixed states… 

Scenario 3:  Many copies, joint measurements  
            à  Activation of nonlocality 

Palazuelos 2012 

Nonlocality Entanglement ?? 

ρM 
 

2

Bell"Nonlocality" Nega&ve"Par&al"
Transpose""

Entanglement"
Dis&llability"

?"

?"

FIG. 1: Relation between different fundamental manifesta-
tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
false, it would remain to be seen whether negativity under partial
transposition implies Bell nonlocality.

tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form
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of local Hilbert space dimension d = 3. The eigenvalues �
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i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
T

B

)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =
Z

d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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(0|2)� 2p
B

(0|1)� p(01|00)� p(00|10)
+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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' 2.63144⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form
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of local Hilbert space dimension d = 3. The eigenvalues �
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and eigenvectors | 
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i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
T

B

)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0 , 1}. Alice’s settings yield a binary outcome,
a 2 {0 , 1}. Bob’s first setting ( y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting ( y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p ( a b | x y ). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p ( a b | x y ) =

Z
d �µ (�) p ( a | x �) p ( b | y �) (2)

where � represents the shared local variable distributed ac-
cording to the density µ (�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:

I = � p
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B

(0|1)� p (01|00)� p (00|10)
+ p (00|20) + p (01|20) + p (00|01) (3)
+ p (00|11) + p (00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p ( a b | x y ) = Tr(%M

a|x ⌦ M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely

I
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' 2. 63144⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2. 6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4. 8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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FIG. 1: Relation between different fundamental manifesta-
tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
false, it would remain to be seen whether negativity under partial
transposition implies Bell nonlocality.

tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form
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)(%) = ⇢, where T
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:
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where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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' 2.63144⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
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false, it would remain to be seen whether negativity under partial
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
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section. They are chosen such that the state % is invariant
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =
Z

d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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(0|1)� p(01|00)� p(00|10)
+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
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false, it would remain to be seen whether negativity under partial
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form

% =
4X

i=1

�

i

| 
i

ih 
i

| (1)

of local Hilbert space dimension d = 3. The eigenvalues �
i

and eigenvectors | 
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i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
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B

)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =
Z

d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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(0|2)� 2p
B

(0|1)� p(01|00)� p(00|10)
+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely

I

%

' 2.63144⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form
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of local Hilbert space dimension d = 3. The eigenvalues �
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and eigenvectors | 
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i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
T

B

)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0 , 1}. Alice’s settings yield a binary outcome,
a 2 {0 , 1}. Bob’s first setting ( y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting ( y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p ( a b | x y ). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p ( a b | x y ) =

Z
d �µ (�) p ( a | x �) p ( b | y �) (2)

where � represents the shared local variable distributed ac-
cording to the density µ (�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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(0|1)� p (01|00)� p (00|10)
+ p (00|20) + p (01|20) + p (00|01) (3)
+ p (00|11) + p (00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p ( a b | x y ) = Tr(%M

a|x ⌦ M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2. 6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4. 8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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FIG. 1: Relation between different fundamental manifesta-
tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
false, it would remain to be seen whether negativity under partial
transposition implies Bell nonlocality.

tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
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section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
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)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =
Z

d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely

I

%
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
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false, it would remain to be seen whether negativity under partial
transposition implies Bell nonlocality.

tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form
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of local Hilbert space dimension d = 3. The eigenvalues �
i

and eigenvectors | 
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i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
T

B

)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =
Z

d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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(0|1)� p(01|00)� p(00|10)
+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely

I
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' 2.63144⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
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+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution
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These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I
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10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.
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is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
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Here, we disprove the original Peres conjecture. Specif-
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hence bound entangled, but which can nevertheless violate
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
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plies the presence of nonlocality. In particular, this can be
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namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I
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= 2. 6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4. 8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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dashed arrows. The main result of the present work is to show that
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plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
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false, it would remain to be seen whether negativity under partial
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
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under the partial transposition map [12], i.e. PT(%) = (1 ⌦
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)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =
Z

d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
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b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
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questions in entanglement theory. If this conjecture turns out to be
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
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)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =
Z

d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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(0|1)� p(01|00)� p(00|10)
+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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' 2.63144⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
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hence bound entangled, but which can nevertheless violate
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
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come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
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plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M
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and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦M

b|y). (4)

These statistics do not admit a decomposition of the form
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
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on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
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a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
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can be reproduced by a local model if they admit a decom-
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where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
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Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution
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These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form

% =
4X

i=1

�

i

| 
i

ih 
i

| (1)

of local Hilbert space dimension d = 3. The eigenvalues �
i

and eigenvectors | 
i

i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
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a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
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can be reproduced by a local model if they admit a decom-
position of the form:
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where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
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b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
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under the partial transposition map [12], i.e. PT(%) = (1 ⌦
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)(%) = ⇢, where T
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
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Z
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where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
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b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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It is well-known that entanglement distillability implies both non-
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[2] conjectured that nonlocality implies negativity under partial
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
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under the partial transposition map [12], i.e. PT(%) = (1 ⌦
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)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:
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where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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(0|1)� p(01|00)� p(00|10)
+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
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b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
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under the partial transposition map [12], i.e. PT(%) = (1 ⌦
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)(%) = ⇢, where T
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
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come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
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where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
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Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M
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and M

b|y for Bob. The resulting statistics is given by the
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I
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10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
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T

B

)(%) = ⇢, where T
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:
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Z
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where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
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To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
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tion method based on semi-definite programming (SDP)
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surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =
Z

d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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(0|1)� p(01|00)� p(00|10)
+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely

I
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' 2.63144⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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questions in entanglement theory. If this conjecture turns out to be
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
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PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
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plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
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ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution
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These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
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plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution
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These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely

I

%

' 2. 63144⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2. 6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4. 8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
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hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
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section. They are chosen such that the state % is invariant
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)(%) = ⇢, where T
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
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a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:
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where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
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b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
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section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
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)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =
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where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
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)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
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where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:

I = �p

A

(0|2)� 2p
B

(0|1)� p(01|00)� p(00|10)
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+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution
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namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I
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10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
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leaving the possibility open for a slightly higher violation
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nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
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under the partial transposition map [12], i.e. PT(%) = (1 ⌦
T

B

)(%) = ⇢, where T
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on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
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can be reproduced by a local model if they admit a decom-
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where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:

I = �p

A

(0|2)� 2p
B

(0|1)� p(01|00)� p(00|10)
+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
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These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
false, it would remain to be seen whether negativity under partial
transposition implies Bell nonlocality.

tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form
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of local Hilbert space dimension d = 3. The eigenvalues �
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and eigenvectors | 
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i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
T

B

)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =
Z

d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:

I = �p

A

(0|2)� 2p
B

(0|1)� p(01|00)� p(00|10)
+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely

I

%

' 2.63144⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
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achieved by performing judiciously chosen local measure-
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ments operators, acting on C 3, are denoted M
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and M
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probability distribution
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These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2. 6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4. 8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
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understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form

% =
4X

i=1

�

i

| 
i

ih 
i

| (1)

of local Hilbert space dimension d = 3. The eigenvalues �
i

and eigenvectors | 
i

i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
T

B

)(%) = ⇢, where T

B

denotes the transposition operation
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Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
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These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I
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10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
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is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
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hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form

% =
4X

i=1

�

i

| 
i

ih 
i

| (1)

of local Hilbert space dimension d = 3. The eigenvalues �
i

and eigenvectors | 
i

i 2 C 3 ⌦ C 3 are given in the Methods
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)(%) = ⇢, where T
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
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a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:
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where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
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b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
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under the partial transposition map [12], i.e. PT(%) = (1 ⌦
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)(%) = ⇢, where T
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
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where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
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b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
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is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
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hence bound entangled, but which can nevertheless violate
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
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Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution
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(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
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and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
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tion described above is however analytical, and was recon-
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and thus disproves the Peres conjecture.
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tion described above is however analytical, and was recon-
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
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tion described above is however analytical, and was recon-
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b|y for Bob. The resulting statistics is given by the
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Details are given in the Methods section. This proves that a
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To derive this result, we followed a numerical optimiza-
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tion described above is however analytical, and was recon-
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plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely

I

%

' 2.63144⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
false, it would remain to be seen whether negativity under partial
transposition implies Bell nonlocality.

tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form
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a 2 {0 , 1}. Bob’s first setting ( y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting ( y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p ( a b | x y ). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p ( a b | x y ) =

Z
d �µ (�) p ( a | x �) p ( b | y �) (2)

where � represents the shared local variable distributed ac-
cording to the density µ (�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:

I = � p

A

(0|2)� 2p

B

(0|1)� p (01|00)� p (00|10)
+ p (00|20) + p (01|20) + p (00|01) (3)
+ p (00|11) + p (00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p ( a b | x y ) = Tr(%M

a|x ⌦ M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely

I

%

' 2. 63144⇥ 10�4
. (5)
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tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
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using PPT states of arbitrary Hilbert space dimension.
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is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
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ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M
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and M

b|y for Bob. The resulting statistics is given by the
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namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT
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10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
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FIG. 1: Relation between different fundamental manifesta-
tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [23] and negativity under partial transposition [20]. Peres
[17] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show
that this conjecture is false, as indicated by the red crosses. To
complete the diagram, it remains to be seen whether negativity of
partial transpose implies distillability, one of the most important
open questions in entanglement theory [33, 34]. If this conjecture
turns out to be false, it would remain to be seen whether negativity
under partial transposition implies Bell nonlocality.

considering the notion of quantum steering [28–30]. How-
ever, Peres’ original conjecture remained open, and has be-
come known as one of the main conjectures in quantum in-
formation theory. Solving this problem is thus an impor-
tant challenge as it would lead to a deeper understanding of
how different manifestations of the phenomenon of entan-
glement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specifi-
cally, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless vio-
late a Bell inequality (see Fig. 2). This shows that Bell
nonlocality is fundamentally different from both entangle-
ment distillability and negativity under partial transposi-
tion. Finally, we show that bound entanglement can be use-
ful in nonlocality-based quantum information protocols, in
particular for device-independent randomness certification
[31, 32].

RESULTS

We start by constructing a bound entangled state of local
Hilbert space dimension d = 3, and then show that this state

can violate a simple Bell inequality. Consider an entangled
state of the form
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(�|01i + |10i + |22i) ,

where a =
q

131
2 . The state % is part of a family of states

recently discussed in [28]. Importantly the above choice
of eigenvalues and eigenvectors ensures that the state %

is invariant under the partial transposition map [18], i.e.
PT(%) = (1 ⌦ T

B

)(%) = ⇢, where T

B

denotes the trans-
position operation on the second subsystem. This ensures
that the state % is PPT, i.e. PT(%) ⌫ 0, and therefore undis-
tillable [20].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-
surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) is bi-
nary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =

Z
d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [35]:

I = �p

A

(0|2) � 2p

B

(0|1) � p(01|00) � p(00|10) + p(00|20)

+p(01|20) + p(00|01) + p(00|11) + p(00|21)  0,

where p

A

(a|x) and p

B

(b|y) denote Alice’s and Bob’s
marginal distributions. Hence a violation of the above in-
equality, i.e. I > 0, implies the presence of nonlocality.
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der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [23] and negativity under partial transposition [20]. Peres
[17] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show
that this conjecture is false, as indicated by the red crosses. To
complete the diagram, it remains to be seen whether negativity of
partial transpose implies distillability, one of the most important
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turns out to be false, it would remain to be seen whether negativity
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considering the notion of quantum steering [28–30]. How-
ever, Peres’ original conjecture remained open, and has be-
come known as one of the main conjectures in quantum in-
formation theory. Solving this problem is thus an impor-
tant challenge as it would lead to a deeper understanding of
how different manifestations of the phenomenon of entan-
glement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specifi-
cally, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless vio-
late a Bell inequality (see Fig. 2). This shows that Bell
nonlocality is fundamentally different from both entangle-
ment distillability and negativity under partial transposi-
tion. Finally, we show that bound entanglement can be use-
ful in nonlocality-based quantum information protocols, in
particular for device-independent randomness certification
[31, 32].

RESULTS

We start by constructing a bound entangled state of local
Hilbert space dimension d = 3, and then show that this state
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)(%) = ⇢, where T
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denotes the trans-
position operation on the second subsystem. This ensures
that the state % is PPT, i.e. PT(%) ⌫ 0, and therefore undis-
tillable [20].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-
surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) is bi-
nary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =

Z
d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [35]:
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(0|2) � 2p

B
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where p
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(b|y) denote Alice’s and Bob’s
marginal distributions. Hence a violation of the above in-
equality, i.e. I > 0, implies the presence of nonlocality.
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ever, Peres’ original conjecture remained open, and has be-
come known as one of the main conjectures in quantum in-
formation theory. Solving this problem is thus an impor-
tant challenge as it would lead to a deeper understanding of
how different manifestations of the phenomenon of entan-
glement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specifi-
cally, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless vio-
late a Bell inequality (see Fig. 2). This shows that Bell
nonlocality is fundamentally different from both entangle-
ment distillability and negativity under partial transposi-
tion. Finally, we show that bound entanglement can be use-
ful in nonlocality-based quantum information protocols, in
particular for device-independent randomness certification
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tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-
surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) is bi-
nary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
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ever, Peres’ original conjecture remained open, and has be-
come known as one of the main conjectures in quantum in-
formation theory. Solving this problem is thus an impor-
tant challenge as it would lead to a deeper understanding of
how different manifestations of the phenomenon of entan-
glement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specifi-
cally, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless vio-
late a Bell inequality (see Fig. 2). This shows that Bell
nonlocality is fundamentally different from both entangle-
ment distillability and negativity under partial transposi-
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ful in nonlocality-based quantum information protocols, in
particular for device-independent randomness certification
[31, 32].
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recently discussed in [28]. Importantly the above choice
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is invariant under the partial transposition map [18], i.e.
PT(%) = (1 ⌦ T

B

)(%) = ⇢, where T

B

denotes the trans-
position operation on the second subsystem. This ensures
that the state % is PPT, i.e. PT(%) ⌫ 0, and therefore undis-
tillable [20].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-
surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) is bi-
nary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =

Z
d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [35]:
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B

(0|1) � p(01|00) � p(00|10) + p(00|20)

+p(01|20) + p(00|01) + p(00|11) + p(00|21)  0,

where p

A

(a|x) and p

B

(b|y) denote Alice’s and Bob’s
marginal distributions. Hence a violation of the above in-
equality, i.e. I > 0, implies the presence of nonlocality.

State:  3 x 3 (Moroder et al 2014) 
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the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [23] and negativity under partial transposition [20]. Peres
[17] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show
that this conjecture is false, as indicated by the red crosses. To
complete the diagram, it remains to be seen whether negativity of
partial transpose implies distillability, one of the most important
open questions in entanglement theory [33, 34]. If this conjecture
turns out to be false, it would remain to be seen whether negativity
under partial transposition implies Bell nonlocality.

considering the notion of quantum steering [28–30]. How-
ever, Peres’ original conjecture remained open, and has be-
come known as one of the main conjectures in quantum in-
formation theory. Solving this problem is thus an impor-
tant challenge as it would lead to a deeper understanding of
how different manifestations of the phenomenon of entan-
glement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specifi-
cally, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless vio-
late a Bell inequality (see Fig. 2). This shows that Bell
nonlocality is fundamentally different from both entangle-
ment distillability and negativity under partial transposi-
tion. Finally, we show that bound entanglement can be use-
ful in nonlocality-based quantum information protocols, in
particular for device-independent randomness certification
[31, 32].

RESULTS

We start by constructing a bound entangled state of local
Hilbert space dimension d = 3, and then show that this state
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that the state % is PPT, i.e. PT(%) ⌫ 0, and therefore undis-
tillable [20].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-
surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) is bi-
nary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =

Z
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where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
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where p
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(b|y) denote Alice’s and Bob’s
marginal distributions. Hence a violation of the above in-
equality, i.e. I > 0, implies the presence of nonlocality.
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der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [23] and negativity under partial transposition [20]. Peres
[17] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show
that this conjecture is false, as indicated by the red crosses. To
complete the diagram, it remains to be seen whether negativity of
partial transpose implies distillability, one of the most important
open questions in entanglement theory [33, 34]. If this conjecture
turns out to be false, it would remain to be seen whether negativity
under partial transposition implies Bell nonlocality.

considering the notion of quantum steering [28–30]. How-
ever, Peres’ original conjecture remained open, and has be-
come known as one of the main conjectures in quantum in-
formation theory. Solving this problem is thus an impor-
tant challenge as it would lead to a deeper understanding of
how different manifestations of the phenomenon of entan-
glement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specifi-
cally, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless vio-
late a Bell inequality (see Fig. 2). This shows that Bell
nonlocality is fundamentally different from both entangle-
ment distillability and negativity under partial transposi-
tion. Finally, we show that bound entanglement can be use-
ful in nonlocality-based quantum information protocols, in
particular for device-independent randomness certification
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is invariant under the partial transposition map [18], i.e.
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)(%) = ⇢, where T

B

denotes the trans-
position operation on the second subsystem. This ensures
that the state % is PPT, i.e. PT(%) ⌫ 0, and therefore undis-
tillable [20].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-
surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) is bi-
nary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =

Z
d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [35]:

I = �p
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(0|2) � 2p

B

(0|1) � p(01|00) � p(00|10) + p(00|20)

+p(01|20) + p(00|01) + p(00|11) + p(00|21)  0,

where p
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(b|y) denote Alice’s and Bob’s
marginal distributions. Hence a violation of the above in-
equality, i.e. I > 0, implies the presence of nonlocality.
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der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [23] and negativity under partial transposition [20]. Peres
[17] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show
that this conjecture is false, as indicated by the red crosses. To
complete the diagram, it remains to be seen whether negativity of
partial transpose implies distillability, one of the most important
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turns out to be false, it would remain to be seen whether negativity
under partial transposition implies Bell nonlocality.
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come known as one of the main conjectures in quantum in-
formation theory. Solving this problem is thus an impor-
tant challenge as it would lead to a deeper understanding of
how different manifestations of the phenomenon of entan-
glement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specifi-
cally, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless vio-
late a Bell inequality (see Fig. 2). This shows that Bell
nonlocality is fundamentally different from both entangle-
ment distillability and negativity under partial transposi-
tion. Finally, we show that bound entanglement can be use-
ful in nonlocality-based quantum information protocols, in
particular for device-independent randomness certification
[31, 32].
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)(%) = ⇢, where T
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denotes the trans-
position operation on the second subsystem. This ensures
that the state % is PPT, i.e. PT(%) ⌫ 0, and therefore undis-
tillable [20].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-
surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) is bi-
nary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =

Z
d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [35]:

I = �p

A
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where p
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tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [23] and negativity under partial transposition [20]. Peres
[17] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show
that this conjecture is false, as indicated by the red crosses. To
complete the diagram, it remains to be seen whether negativity of
partial transpose implies distillability, one of the most important
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tant challenge as it would lead to a deeper understanding of
how different manifestations of the phenomenon of entan-
glement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specifi-
cally, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless vio-
late a Bell inequality (see Fig. 2). This shows that Bell
nonlocality is fundamentally different from both entangle-
ment distillability and negativity under partial transposi-
tion. Finally, we show that bound entanglement can be use-
ful in nonlocality-based quantum information protocols, in
particular for device-independent randomness certification
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tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-
surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) is bi-
nary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =

Z
d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [35]:
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(0|2) � 2p
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where p
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marginal distributions. Hence a violation of the above in-
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der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [23] and negativity under partial transposition [20]. Peres
[17] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show
that this conjecture is false, as indicated by the red crosses. To
complete the diagram, it remains to be seen whether negativity of
partial transpose implies distillability, one of the most important
open questions in entanglement theory [33, 34]. If this conjecture
turns out to be false, it would remain to be seen whether negativity
under partial transposition implies Bell nonlocality.

considering the notion of quantum steering [28–30]. How-
ever, Peres’ original conjecture remained open, and has be-
come known as one of the main conjectures in quantum in-
formation theory. Solving this problem is thus an impor-
tant challenge as it would lead to a deeper understanding of
how different manifestations of the phenomenon of entan-
glement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specifi-
cally, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless vio-
late a Bell inequality (see Fig. 2). This shows that Bell
nonlocality is fundamentally different from both entangle-
ment distillability and negativity under partial transposi-
tion. Finally, we show that bound entanglement can be use-
ful in nonlocality-based quantum information protocols, in
particular for device-independent randomness certification
[31, 32].
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a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) is bi-
nary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:
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Z
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FIG. 1: Relation between different fundamental manifesta-
tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
false, it would remain to be seen whether negativity under partial
transposition implies Bell nonlocality.

tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
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on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =
Z

d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:

I = �p

A

(0|2)� 2p
B

(0|1)� p(01|00)� p(00|10)
+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely

I

%

' 2.63144⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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FIG. 1: Relation between different fundamental manifesta-
tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
false, it would remain to be seen whether negativity under partial
transposition implies Bell nonlocality.

tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form
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of local Hilbert space dimension d = 3. The eigenvalues �
i
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i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
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B

)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =
Z

d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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(0|1)� p(01|00)� p(00|10)
+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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' 2.63144⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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FIG. 1: Relation between different fundamental manifesta-
tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [23] and negativity under partial transposition [20]. Peres
[17] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show
that this conjecture is false, as indicated by the red crosses. To
complete the diagram, it remains to be seen whether negativity of
partial transpose implies distillability, one of the most important
open questions in entanglement theory [33, 34]. If this conjecture
turns out to be false, it would remain to be seen whether negativity
under partial transposition implies Bell nonlocality.

considering the notion of quantum steering [28–30]. How-
ever, Peres’ original conjecture remained open, and has be-
come known as one of the main conjectures in quantum in-
formation theory. Solving this problem is thus an impor-
tant challenge as it would lead to a deeper understanding of
how different manifestations of the phenomenon of entan-
glement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specifi-
cally, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless vio-
late a Bell inequality (see Fig. 2). This shows that Bell
nonlocality is fundamentally different from both entangle-
ment distillability and negativity under partial transposi-
tion. Finally, we show that bound entanglement can be use-
ful in nonlocality-based quantum information protocols, in
particular for device-independent randomness certification
[31, 32].

RESULTS

We start by constructing a bound entangled state of local
Hilbert space dimension d = 3, and then show that this state

can violate a simple Bell inequality. Consider an entangled
state of the form

% =
4X

i=1

�

i

| 
i

ih 
i

|. (1)

The eigenvalues are � =
�

3257
6884 ,

450
1721 ,

450
1721 ,

27
6884

�
, and with

eigenvectors | 
i

i 2 C 3 ⌦ C 3 are given by

| 1i =
1p
2

(|00i + |11i)

| 2i =
a

12
(|01i + |10i) +

1

60
|02i � 3

10
|21i

| 3i =
a

12
(|00i � |11i) +

1

60
|12i +

3

10
|20i

| 4i =
1p
3

(�|01i + |10i + |22i) ,

where a =
q

131
2 . The state % is part of a family of states

recently discussed in [28]. Importantly the above choice
of eigenvalues and eigenvectors ensures that the state %

is invariant under the partial transposition map [18], i.e.
PT(%) = (1 ⌦ T

B

)(%) = ⇢, where T

B

denotes the trans-
position operation on the second subsystem. This ensures
that the state % is PPT, i.e. PT(%) ⌫ 0, and therefore undis-
tillable [20].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-
surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) is bi-
nary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =

Z
d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [35]:

I = �p

A

(0|2) � 2p

B

(0|1) � p(01|00) � p(00|10) + p(00|20)

+p(01|20) + p(00|01) + p(00|11) + p(00|21)  0,

where p

A

(a|x) and p

B

(b|y) denote Alice’s and Bob’s
marginal distributions. Hence a violation of the above in-
equality, i.e. I > 0, implies the presence of nonlocality.

Alice: 3 binary meas 
Bob:  1 ternary meas, 1 binary meas 
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tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [23] and negativity under partial transposition [20]. Peres
[17] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show
that this conjecture is false, as indicated by the red crosses. To
complete the diagram, it remains to be seen whether negativity of
partial transpose implies distillability, one of the most important
open questions in entanglement theory [33, 34]. If this conjecture
turns out to be false, it would remain to be seen whether negativity
under partial transposition implies Bell nonlocality.

considering the notion of quantum steering [28–30]. How-
ever, Peres’ original conjecture remained open, and has be-
come known as one of the main conjectures in quantum in-
formation theory. Solving this problem is thus an impor-
tant challenge as it would lead to a deeper understanding of
how different manifestations of the phenomenon of entan-
glement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specifi-
cally, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless vio-
late a Bell inequality (see Fig. 2). This shows that Bell
nonlocality is fundamentally different from both entangle-
ment distillability and negativity under partial transposi-
tion. Finally, we show that bound entanglement can be use-
ful in nonlocality-based quantum information protocols, in
particular for device-independent randomness certification
[31, 32].

RESULTS

We start by constructing a bound entangled state of local
Hilbert space dimension d = 3, and then show that this state

can violate a simple Bell inequality. Consider an entangled
state of the form
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recently discussed in [28]. Importantly the above choice
of eigenvalues and eigenvectors ensures that the state %

is invariant under the partial transposition map [18], i.e.
PT(%) = (1 ⌦ T

B

)(%) = ⇢, where T

B

denotes the trans-
position operation on the second subsystem. This ensures
that the state % is PPT, i.e. PT(%) ⌫ 0, and therefore undis-
tillable [20].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-
surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) is bi-
nary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =

Z
d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [35]:

I = �p

A

(0|2) � 2p

B

(0|1) � p(01|00) � p(00|10) + p(00|20)

+p(01|20) + p(00|01) + p(00|11) + p(00|21)  0,

where p

A

(a|x) and p

B

(b|y) denote Alice’s and Bob’s
marginal distributions. Hence a violation of the above in-
equality, i.e. I > 0, implies the presence of nonlocality.

Alice: 3 binary meas 
Bob:  1 ternary meas, 1 binary meas 
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In particular, this can be achieved by performing judi-
ciously chosen local measurements on the bound entangled
state %. The local measurement operators, acting on C 3, are
denoted M

a|x for Alice and M

b|y for Bob. The measure-
ment operators of Alice are rank-1 real-valued projectors
M0|x = |A

x

ihA
x

|, with

|A0i = �p|0i +
p

3p|1i +
p

1 � 4p

2|2i
|A1i = 2p|0i +

p
1 � 4p

2|2i
|A2i = �p|0i �

p
3p|1i +

p
1 � 4p

2|2i

where p = 1/5. We have that M1|x = 1 � M0|x, where
1 denotes the identity operator in C 3. Bob’s first measure-
ment is given by M

b|0 = |Bb

0ihBb

0| (for b = 0, 1) by

|B0
0i =

r
2

3
|1i +

1p
3
|2i

|B1
0i = � 1p

2
|0i � 1p

6
|1i +

1p
3
|2i

and M2|0 = 1 � M0|0 � M1|0. For Bob’s second setting,
we take M0|1 = |2ih2| and M1|1 = 1�M0|1. The resulting
statistics is given by the probability distribution

p(ab|xy) = Tr(%M

a|x ⌦ M

b|y). (3)

These statistics do not admit a decomposition of the form
(2), as they lead to a violation of the Bell inequality (3),
given analytically by

I

%

=
�3386 + 18

p
42 � 5

p
131 + 45

p
5502

43025
(4)

' 2.63144 ⇥ 10�4
.

This proves that a bipartite bound entangled state can give
rise to nonlocality, thus disproving the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[37], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [36], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
information processing, in particular in nonlocality-based
tasks. Here we consider randomness expansion based on
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FIG. 1: Relation between different fundamental manifesta-
tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
false, it would remain to be seen whether negativity under partial
transposition implies Bell nonlocality.

tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form

% =
4X
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| (1)

of local Hilbert space dimension d = 3. The eigenvalues �
i

and eigenvectors | 
i

i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
T

B

)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =

Z
d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:

I = �p

A

(0|2) � 2p

B

(0|1) � p(01|00) � p(00|10)

+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦ M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely

I

%

' 2.63144 ⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
false, it would remain to be seen whether negativity under partial
transposition implies Bell nonlocality.

tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form

% =
4X

i=1

�

i

| 
i

ih 
i

| (1)

of local Hilbert space dimension d = 3. The eigenvalues �
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and eigenvectors | 
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i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
T

B

)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =

Z
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where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
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b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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ments operators, acting on C 3, are denoted M
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b|y for Bob. The resulting statistics is given by the
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achieved by performing judiciously chosen local measure-
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ments operators, acting on C 3, are denoted M
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and M

b|y for Bob. The resulting statistics is given by the
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To derive this result, we followed a numerical optimiza-
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denotes the transposition operation
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ments operators, acting on C 3, are denoted M
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b|y for Bob. The resulting statistics is given by the
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
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i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
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)(%) = ⇢, where T
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =
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where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦ M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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' 2.63144 ⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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+p(00|11) + p(00|21)  0.
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plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M
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and M

b|y for Bob. The resulting statistics is given by the
probability distribution
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These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I
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10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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using PPT states of arbitrary Hilbert space dimension.
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plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M
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and M

b|y for Bob. The resulting statistics is given by the
probability distribution
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These statistics do not admit a decomposition of the form
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namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
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bound on the largest possible violation obtainable from PPT
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plies the presence of nonlocality. In particular, this can be
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ments operators, acting on C 3, are denoted M
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and M

b|y for Bob. The resulting statistics is given by the
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
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FIG. 2: Building a counter-example to the Peres conjecture. In
order to disprove the conjecture, we construct a quantum state %
with the following properties: (1) % is positive under partial trans-
position (PPT), and (2) % is Bell nonlocal. Property (1) follows
here from the fact that % is invariant under partial transposition,
and implies that % cannot be distilled. Property (2) follows from
the fact that the statistics resulting from local measurements on %
violate a simple Bell inequality.

Bell nonlocality [31, 32], in which true quantum random-
ness can be certified without relying on a detailed knowl-
edge about the functioning of the devices used in the proto-
col. The security of the protocol is therefore called ’device-
independent’. Following the techniques of Ref. [38, 39],
we obtained lower bounds on the amount of randomness
that can be certified from the nonlocal statistics. The lat-
ter is here quantified by the min-entropy, which represents
the number of random bits that can be extracted per run of
the Bell test. The results, summarized in Table 1, show that
randomness can indeed be certified using a bipartite bound
entangled state. Note that, given its usefulness in quantum
key distribution (QKD) [40], it would be interesting to see if
bound entanglement could also be used to establish a secret
key in the context of device-independent QKD [41].

Another potential application of our bound entangled
state is in communication complexity, which is strongly
connected to quantum nonlocality. Using the techniques of
Ref. [42] (see also [43]), one can construct a communica-
tion complexity problem for which bound entanglement is
useful, that is, it helps reducing the amount of communica-
tion compared to classical resources.

DISCUSSION

To summarize, we have shown that bipartite bound en-
tangled states can lead to Bell inequality violation, thus dis-
proving the long-standing conjecture of Peres. This rep-
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This proves that a bipartite bound entangled state can give
rise to nonlocality, thus disproving the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[37], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [36], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
information processing, in particular in nonlocality-based
tasks. Here we consider randomness expansion based on
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achieved by performing judiciously chosen local measure-
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ments operators, acting on C 3, are denoted M
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and M

b|y for Bob. The resulting statistics is given by the
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Details are given in the Methods section. This proves that a
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To derive this result, we followed a numerical optimiza-
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[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
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is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
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on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =

Z
d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
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b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form
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i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
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)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =

Z
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where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦ M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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' 2.63144 ⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
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hence bound entangled, but which can nevertheless violate
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
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Nevertheless, the state % is entangled, hence bound en-
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prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-
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Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution
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These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I
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= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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understanding of how different manifestations of the phe-
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ically, we present a bipartite entangled state which is PPT,
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a Bell inequality (see Fig. 2). We consider an entangled
state of the form

% =
4X

i=1

�

i

| 
i

ih 
i

| (1)

of local Hilbert space dimension d = 3. The eigenvalues �
i

and eigenvectors | 
i

i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
T

B

)(%) = ⇢, where T
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
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where � represents the shared local variable distributed ac-
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here, all statistics of the above form satisfy the Bell inequal-
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+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
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b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT
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10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
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)(%) = ⇢, where T
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
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where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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(0|1) � p(01|00) � p(00|10)

+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦ M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum

FIG. 2: Building a counter-example to the Peres conjecture. In
order to disprove the conjecture, we construct a quantum state %
with the following properties: (1) % is positive under partial trans-
position (PPT), and (2) % is Bell nonlocal. Property (1) follows
here from the fact that % is invariant under partial transposition,
and implies that % cannot be distilled. Property (2) follows from
the fact that the statistics resulting from local measurements on %
violate a simple Bell inequality.

Bell nonlocality [31, 32], in which true quantum random-
ness can be certified without relying on a detailed knowl-
edge about the functioning of the devices used in the proto-
col. The security of the protocol is therefore called ’device-
independent’. Following the techniques of Ref. [38, 39],
we obtained lower bounds on the amount of randomness
that can be certified from the nonlocal statistics. The lat-
ter is here quantified by the min-entropy, which represents
the number of random bits that can be extracted per run of
the Bell test. The results, summarized in Table 1, show that
randomness can indeed be certified using a bipartite bound
entangled state. Note that, given its usefulness in quantum
key distribution (QKD) [40], it would be interesting to see if
bound entanglement could also be used to establish a secret
key in the context of device-independent QKD [41].

Another potential application of our bound entangled
state is in communication complexity, which is strongly
connected to quantum nonlocality. Using the techniques of
Ref. [42] (see also [43]), one can construct a communica-
tion complexity problem for which bound entanglement is
useful, that is, it helps reducing the amount of communica-
tion compared to classical resources.

DISCUSSION

To summarize, we have shown that bipartite bound en-
tangled states can lead to Bell inequality violation, thus dis-
proving the long-standing conjecture of Peres. This rep-
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
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)(%) = ⇢, where T
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
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plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution
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These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =
Z

d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
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I = �p

A

(0|2)� 2p
B

(0|1)� p(01|00)� p(00|10)
+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution
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These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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FIG. 1: Relation between different fundamental manifesta-
tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
false, it would remain to be seen whether negativity under partial
transposition implies Bell nonlocality.

tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form

% =
4X

i=1

�

i

| 
i

ih 
i

| (1)

of local Hilbert space dimension d = 3. The eigenvalues �
i

and eigenvectors | 
i

i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
T

B

)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =

Z
d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:

I = �p

A

(0|2) � 2p

B

(0|1) � p(01|00) � p(00|10)

+p(00|20) + p(01|20) + p(00|01) (3)
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Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
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b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).
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hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
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)(%) = ⇢, where T
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =

Z
d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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(0|2) � 2p

B

(0|1) � p(01|00) � p(00|10)

+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦ M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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' 2.63144 ⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum

2

Bell"Nonlocality" Nega&ve"Par&al"
Transpose""

Entanglement"
Dis&llability"

?"

?"

FIG. 1: Relation between different fundamental manifesta-
tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form
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i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
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B

)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:
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Z
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where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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(0|1) � p(01|00) � p(00|10)

+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦ M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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understanding of how different manifestations of the phe-
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Here, we disprove the original Peres conjecture. Specif-
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hence bound entangled, but which can nevertheless violate
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on the second subsystem. This ensures that the state % is
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tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
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Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
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b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I
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10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
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Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-
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Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
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These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
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tion described above is however analytical, and was recon-
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plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
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ments operators, acting on C 3, are denoted M
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b|y for Bob. The resulting statistics is given by the
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plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
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ments operators, acting on C 3, are denoted M
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and M

b|y for Bob. The resulting statistics is given by the
probability distribution
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
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[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
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denotes the transposition operation
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achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M
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and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦ M

b|y). (4)

These statistics do not admit a decomposition of the form
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
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PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =

Z
d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦ M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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' 2.63144 ⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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order to disprove the conjecture, we construct a quantum state %
with the following properties: (1) % is positive under partial trans-
position (PPT), and (2) % is Bell nonlocal. Property (1) follows
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Bell nonlocality [31, 32], in which true quantum random-
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This proves that a bipartite bound entangled state can give
rise to nonlocality, thus disproving the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[37], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I
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10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [36], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
information processing, in particular in nonlocality-based
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Par$al&
Transpose&

(1)   &is&PPT&
&&!&undis$llable&

& & && &&&violates&
a&Bell&inequality&

(2)   &is&Bell&&
&&&&&&nonlocal&

Bell&test&
AND&

Peres%conjecture%
is%false%

2

Bell"Nonlocality" Nega&ve"Par&al"
Transpose""

Entanglement"
Dis&llability"

?"

?"

FIG. 1: Relation between different fundamental manifesta-
tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
false, it would remain to be seen whether negativity under partial
transposition implies Bell nonlocality.

tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
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on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
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a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =
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where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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(0|1) � p(01|00) � p(00|10)

+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦ M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum

2

Bell"Nonlocality" Nega&ve"Par&al"
Transpose""

Entanglement"
Dis&llability"

?"

?"

FIG. 1: Relation between different fundamental manifesta-
tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
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understanding of how different manifestations of the phe-
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hence bound entangled, but which can nevertheless violate
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =

Z
d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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(0|2) � 2p

B

(0|1) � p(01|00) � p(00|10)

+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦ M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
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Here, we disprove the original Peres conjecture. Specif-
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hence bound entangled, but which can nevertheless violate
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)(%) = ⇢, where T
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:
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Z
d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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(0|2) � 2p
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(0|1) � p(01|00) � p(00|10)

+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
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b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I
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= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
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achieved by performing judiciously chosen local measure-
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ments operators, acting on C 3, are denoted M
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and M

b|y for Bob. The resulting statistics is given by the
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
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is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
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where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:

I = �p

A

(0|2) � 2p

B

(0|1) � p(01|00) � p(00|10)

+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
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b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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and thus disproves the Peres conjecture.
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bipartite bound entangled state can give rise to nonlocality,
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Details are given in the Methods section. This proves that a
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To derive this result, we followed a numerical optimiza-
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der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
false, it would remain to be seen whether negativity under partial
transposition implies Bell nonlocality.

tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form
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i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
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)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =

Z
d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦ M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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' 2.63144 ⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum

FIG. 2: Building a counter-example to the Peres conjecture. In
order to disprove the conjecture, we construct a quantum state %
with the following properties: (1) % is positive under partial trans-
position (PPT), and (2) % is Bell nonlocal. Property (1) follows
here from the fact that % is invariant under partial transposition,
and implies that % cannot be distilled. Property (2) follows from
the fact that the statistics resulting from local measurements on %
violate a simple Bell inequality.

Bell nonlocality [31, 32], in which true quantum random-
ness can be certified without relying on a detailed knowl-
edge about the functioning of the devices used in the proto-
col. The security of the protocol is therefore called ’device-
independent’. Following the techniques of Ref. [38, 39],
we obtained lower bounds on the amount of randomness
that can be certified from the nonlocal statistics. The lat-
ter is here quantified by the min-entropy, which represents
the number of random bits that can be extracted per run of
the Bell test. The results, summarized in Table 1, show that
randomness can indeed be certified using a bipartite bound
entangled state. Note that, given its usefulness in quantum
key distribution (QKD) [40], it would be interesting to see if
bound entanglement could also be used to establish a secret
key in the context of device-independent QKD [41].

Another potential application of our bound entangled
state is in communication complexity, which is strongly
connected to quantum nonlocality. Using the techniques of
Ref. [42] (see also [43]), one can construct a communica-
tion complexity problem for which bound entanglement is
useful, that is, it helps reducing the amount of communica-
tion compared to classical resources.

DISCUSSION

To summarize, we have shown that bipartite bound en-
tangled states can lead to Bell inequality violation, thus dis-
proving the long-standing conjecture of Peres. This rep-
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This proves that a bipartite bound entangled state can give
rise to nonlocality, thus disproving the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[37], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I
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10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [36], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
information processing, in particular in nonlocality-based
tasks. Here we consider randomness expansion based on
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dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
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i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
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)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =

Z
d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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(0|2) � 2p

B

(0|1) � p(01|00) � p(00|10)

+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦ M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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' 2.63144 ⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
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i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
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)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =

Z
d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:

I = �p

A

(0|2) � 2p

B

(0|1) � p(01|00) � p(00|10)

+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦ M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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' 2.63144 ⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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It is well-known that entanglement distillability implies both non-
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tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
state of the form
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of local Hilbert space dimension d = 3. The eigenvalues �
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i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
T

B

)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =

Z
d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:

I = �p

A

(0|2) � 2p

B

(0|1) � p(01|00) � p(00|10)

+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦ M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I
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PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
ically, we present a bipartite entangled state which is PPT,
hence bound entangled, but which can nevertheless violate
a Bell inequality (see Fig. 2). We consider an entangled
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denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =

Z
d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:
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+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
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These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
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tion described above is however analytical, and was recon-
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understanding of how different manifestations of the phe-
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ically, we present a bipartite entangled state which is PPT,
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and M
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[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
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achieved by performing judiciously chosen local measure-
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b|y for Bob. The resulting statistics is given by the
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To derive this result, we followed a numerical optimiza-
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tion described above is however analytical, and was recon-
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achieved by performing judiciously chosen local measure-
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ments operators, acting on C 3, are denoted M
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and M

b|y for Bob. The resulting statistics is given by the
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
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achieved by performing judiciously chosen local measure-
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b|y for Bob. The resulting statistics is given by the
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Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
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plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦ M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely

I

%

' 2.63144 ⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum
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FIG. 1: Relation between different fundamental manifesta-
tions of quantum entanglement. Bell nonlocality, negativity un-
der partial transposition, and entanglement distillability represent
three facets of the phenomenon of entanglement. Understanding
the connection between these concepts is a longstanding problem.
It is well-known that entanglement distillability implies both non-
locality [9] and negativity under partial transposition [11]. Peres
[2] conjectured that nonlocality implies negativity under partial
transpose and entanglement distillability; hence represented by the
dashed arrows. The main result of the present work is to show that
this conjecture is false, as indicated by the red crosses. To com-
plete the diagram, it remains to be seen whether negativity of par-
tial transpose implies distillability, one the most important open
questions in entanglement theory. If this conjecture turns out to be
false, it would remain to be seen whether negativity under partial
transposition implies Bell nonlocality.

tures in quantum information theory. Solving this problem
is thus an important challenge as it would lead to a deeper
understanding of how different manifestations of the phe-
nomenon of entanglement relate to each other (see Fig.1).

Here, we disprove the original Peres conjecture. Specif-
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a Bell inequality (see Fig. 2). We consider an entangled
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% =
4X

i=1

�

i

| 
i
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i

| (1)

of local Hilbert space dimension d = 3. The eigenvalues �
i

and eigenvectors | 
i

i 2 C 3 ⌦ C 3 are given in the Methods
section. They are chosen such that the state % is invariant
under the partial transposition map [12], i.e. PT(%) = (1 ⌦
T

B

)(%) = ⇢, where T

B

denotes the transposition operation
on the second subsystem. This ensures that the state % is
PPT, i.e. PT(%) ⌫ 0, and therefore undistillable [11].

Nevertheless, the state % is entangled, hence bound en-
tangled, as it can lead to Bell inequality violation. To
prove this, we consider a Bell test with two distant ob-
servers, Alice and Bob. Alice chooses between three mea-

surement settings, x 2 {0, 1, 2}, and Bob among two set-
tings, y 2 {0, 1}. Alice’s settings yield a binary outcome,
a 2 {0, 1}. Bob’s first setting (y = 0) has a ternary out-
come, b 2 {0, 1, 2}, and his second setting (y = 1) has is
binary, b 2 {0, 1}. The experiment is thus characterized by
the joint probability distribution p(ab|xy). These statistics
can be reproduced by a local model if they admit a decom-
position of the form:

p(ab|xy) =

Z
d�µ(�)p(a|x�)p(b|y�) (2)

where � represents the shared local variable distributed ac-
cording to the density µ(�). For the Bell test considered
here, all statistics of the above form satisfy the Bell inequal-
ity [27]:

I = �p

A

(0|2) � 2p

B

(0|1) � p(01|00) � p(00|10)

+p(00|20) + p(01|20) + p(00|01) (3)
+p(00|11) + p(00|21)  0.

Hence a violation of the above inequality, i.e. I > 0, im-
plies the presence of nonlocality. In particular, this can be
achieved by performing judiciously chosen local measure-
ments on the bound entangled state %. The local measure-
ments operators, acting on C 3, are denoted M

a|x for Alice
and M

b|y for Bob. The resulting statistics is given by the
probability distribution

p(ab|xy) = Tr(%M
a|x ⌦ M

b|y). (4)

These statistics do not admit a decomposition of the form
(2), as they give rise to a violation of the Bell inequality (3),
namely

I

%

' 2.63144 ⇥ 10�4
. (5)

Details are given in the Methods section. This proves that a
bipartite bound entangled state can give rise to nonlocality,
and thus disproves the Peres conjecture.

To derive this result, we followed a numerical optimiza-
tion method based on semi-definite programming (SDP)
[29], briefly outlined in the Methods section. The construc-
tion described above is however analytical, and was recon-
structed from the output of the optimization procedure. In
fact, slightly higher Bell violations, up to I

PPT

= 2.6526⇥
10�4, could be found numerically for two-qutrit PPT states.
Moreover, using the SPD techniques of Ref. [28], an upper
bound on the largest possible violation obtainable from PPT
states is here found to be I

max

PPT

< 4.8012 ⇥ 10�4, hence
leaving the possibility open for a slightly higher violation
using PPT states of arbitrary Hilbert space dimension.

Finally, the fact that a bound entangled state can violate
a Bell inequality suggests potential applications in quantum

FIG. 2: Building a counter-example to the Peres conjecture. In
order to disprove the conjecture, we construct a quantum state %
with the following properties: (1) % is positive under partial trans-
position (PPT), and (2) % is Bell nonlocal. Property (1) follows
here from the fact that % is invariant under partial transposition,
and implies that % cannot be distilled. Property (2) follows from
the fact that the statistics resulting from local measurements on %
violate a simple Bell inequality.

Bell nonlocality [31, 32], in which true quantum random-
ness can be certified without relying on a detailed knowl-
edge about the functioning of the devices used in the proto-
col. The security of the protocol is therefore called ’device-
independent’. Following the techniques of Ref. [38, 39],
we obtained lower bounds on the amount of randomness
that can be certified from the nonlocal statistics. The lat-
ter is here quantified by the min-entropy, which represents
the number of random bits that can be extracted per run of
the Bell test. The results, summarized in Table 1, show that
randomness can indeed be certified using a bipartite bound
entangled state. Note that, given its usefulness in quantum
key distribution (QKD) [40], it would be interesting to see if
bound entanglement could also be used to establish a secret
key in the context of device-independent QKD [41].

Another potential application of our bound entangled
state is in communication complexity, which is strongly
connected to quantum nonlocality. Using the techniques of
Ref. [42] (see also [43]), one can construct a communica-
tion complexity problem for which bound entanglement is
useful, that is, it helps reducing the amount of communica-
tion compared to classical resources.

DISCUSSION

To summarize, we have shown that bipartite bound en-
tangled states can lead to Bell inequality violation, thus dis-
proving the long-standing conjecture of Peres. This rep-

Upper bound (Moroder et al. 2013)  



Applications 

1.  Device-independent randomness certification 
 (Pironio et al. Nature 2010, Colbeck PhD thesis 2007) 

4

Bell violation IPPT Hmin (y = 0) Hmin (y = 1)
2.6314⇥ 10�4 4.2320⇥ 10�4 3.6191⇥ 10�4

2.6523⇥ 10�4 4.2310⇥ 10�4 3.6530⇥ 10�4

TABLE I: Device-independent randomness certification using
bound entangled states. We describe here the randomness, as
quantified via the min-entropy Hmin (see main text), from the
statistics of the Bell experiment. The values represent lower
bounds on Hmin (obtained at the third level of the SDP hierarchy,
see [38, 39]) for the outcome of Bob’s measurements (y = 0, 1).
The first line corresponds to our analytical construction, while the
second line is for the statistics corresponding to the largest viola-
tion we found using a PPT state. Note finally, that no randomness
can be extracted from the outcome of Alice’s measurements.

resents significant progress in our understanding of the re-
lation between entanglement and Bell nonlocality, demon-
strating in particular that nonlocality does not imply nega-
tivity under partial transposition or entanglement distillabil-
ity (see Fig. 1). The main open question now is whether all
bound entangled state can give rise to Bell inequality viola-
tion, which would imply that entanglement and nonlocality
are basically equivalent. From a more applied perspective,
we also showed that bound entanglement can be useful in
nonlocality-based quantum information tasks, in particular
device-independent randomness certification.

METHODS

Numerical method. Consider a Bell inequality of the
form

I =
X

a,b,x,y

c

ab|xy

p(ab|xy)  L (5)

with real coefficients c

ab|xy

and local bound L. To find ef-
ficiently violations of such an inequality for PPT states of
local Hilbert space dimension d, we use the following SDP
procedure:

1. Generate randomly local measurement operators
M

a|x and M

b|y acting on C d.

2. Construct the Bell operator:

B =
X

a,b,x,y

c

ab|xy

M

a|x ⌦ M

b|y. (6)

3. Maximize Tr(B⇢) subject to ⇢ ⌫ 0, PT(⇢) ⌫ 0,
Tr(⇢) = 1. This is an SDP, which returns an opti-
mal state ⇢ corresponding to the optimal Bell value
I

Q

= Tr(B⇢).

4. Optimize the measurement operators M

a|x for fixed
M

b|y and ⇢ (given in step 3). This is again an
SDP since I

Q

= Tr(B⇢) =
P

a,x

Tr(M
a|xF

a|x),
where F

a|x =
P

b,y

c

ab|xy

Tr
B

(⇢1 ⌦ M

b|y) are fixed
d ⇥ d matrices. Hence, we maximize I

Q

=P
a,x

Tr(M
a|xF

a|x) subject to
P

a

M

a|x = 1 for all
x and M

a|x ⌫ 0 for all (a, x). Thereby, we obtain
Alice’s optimal measurement operators M

a|x.

5. Similarly, we obtain the optimal measurements for
Bob M

b|y , for fixed ⇢ and M

a|x.

6. Repeat steps 3-5 until convergence of the objective
value I

Q

.
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2.  Communication complexity 
 (Zukowski et al. 2004, Buhrman et al. 2010) 

Quantum nonlocality  à  genuine quantum randomness 



Open questions 

1.  Do all BE states violate a Bell inequality? 

2.  Large (unbounded) Bell violations with BE state? 

3.  Device-independent QKD with BE state? 

Nonlocality Entanglement 
? 
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