Limitations on quantum key repeaters

Karol Horodecki University of Gdańsk

with Stefan Bäuml, Matthias Christandl and Andreas Winter arXiv:1402.5927

Outline

- Background entanglement swapping and quantum (key) repeaters protocols
- Motivation
- The main impossibility result
- The tools: private states, distillable key & properties
- Hiding security states
- Formal statements of the results & ideas of the proof
- Further limitations via entanglement measures
- Conclusions & Open questions

Entanglement swapping

Quantum repeaters

Quantum repeaters as quantum

key repeaters

Motivation

There are **states** which have **key for QKD**, but are **useless for e-bit distillation**

Is there another key swapping or quantum key repeaters protocol which allows for distributing key using these states (does not use teleportation)

Resource Noisy distillable state \rightarrow Noisy state which has key

Protocol: Teleportation \rightarrow arbitrary 3-party LOCC(A:B:C) protocol

Main result

For some of the states ρ which are useful for QKD, there does not exist efficient quantum key repeater

more than $\epsilon \times n$ bits of key

States with limited repeated key

some ρ which are <u>PPT</u> approximate private bits has limited repeated key

Private bits Quantum states that has at least 1 bit of ideal key are called Structure of private state: "twisted" singlet: cinglat twisting"

$$\gamma_{d} = U\left[\left|\psi_{+}^{d}\right\rangle \left\langle\psi_{+}^{d}\right|_{AB} \otimes \rho_{A'B'}\right] U^{-1} \quad \text{where} \quad \psi_{+}^{d} = \frac{1}{\sqrt{d}} \sum_{i=1}^{d} \left|ii\right\rangle \quad U = \sum_{i,j=1}^{d} \left|ij\right\rangle_{AB} \left\langleij\right| \otimes U_{A'B'}^{ij}$$

Quantitatively: amount of privacy in state ρ is called **distillable key**:

$$K_{D}(\rho) = \frac{\inf \ \limsup \ \sup \ \sup}{\epsilon > 0 \ n \to \infty \ \Lambda_{n} \ LOCC, \ \gamma_{m}} \left\{ \frac{m}{n} : \Lambda_{n}(\rho^{\otimes n}) \approx_{\epsilon} \gamma_{m} \right\}$$
[K, M, P Horodeccy & [K, M, P Horodeccy & [K, M, P Horodeccy]]

limited for

repeaters?

States with positive partial transposition (PPT) are $(I \otimes T)\rho_{AB} \geq 0$ useless for e-bit distillation (and teleportation) Notation: ρ^{Γ} [M,P,R. Horodeccy PRL 1998] Why its use is

Back to example:

 $K_D(\rho) \approx 1 \Rightarrow$ state useful for QKD secure under coherent attacks

Some approximate private bits can hide security

Limitations on key swapping

One can not swap key using hiding security states

Proof 'Ad absurdum': **suppose** the following **protocol P is possible**:

The protocol **P**(A:B:C) + protocol **P**'(AB) of discrimination = P" (AB : C) which distinguishes between ρ and $\sigma ! \rightarrow CONTRADICTION !$

Asymptotic case

limits on quantum key repeaters

Asypmtotic definition of key repeater rate:

$$R_{A\leftrightarrow C\leftrightarrow B}(\rho_{AC_{A}}\otimes\tilde{\rho}_{C_{B}B}) = \frac{\inf \ limsup \ sup}{\epsilon > 0 \ n \to \infty} \Lambda_{n}LOCC, \gamma_{m}\left\{\frac{m}{n}: Tr_{C}\Lambda_{n}\left(\left(\rho_{AC_{A}}\otimes\tilde{\rho}_{C_{B}B}\right)^{\otimes n}\right)\approx_{\epsilon}\gamma_{\lfloor m\rfloor}\right\}$$

Intermediate result:

 $R_{A\leftrightarrow C\leftrightarrow B}(\rho_{AC_{A}}\otimes\tilde{\rho}_{C_{B}B}) \leq D_{C\leftrightarrow AB}^{\infty} \quad (\rho_{AC_{A}}\otimes\tilde{\rho}_{C_{B}B}) \qquad \longleftarrow \begin{array}{l} \text{Restricted} \\ \text{Relative} \\ \text{Entropy of} \\ \text{Entropy of} \\ \text{Entanglement see} \\ \text{[Piani PRL'o9]} \end{array}$

Main result:

$$R_{A\leftrightarrow C\leftrightarrow B}(\rho_{AC_{A}}\otimes\tilde{\rho}_{C_{B}B}) \leq D_{C\leftrightarrow AB}^{\infty} (\rho_{AC_{A}}\otimes\rho_{C_{B}B}) = D_{C\leftrightarrow AB}^{\infty} (\rho_{AC_{A}}^{\Gamma}\otimes\rho_{C_{B}B}^{\Gamma}) \leq 2E_{R}(\rho^{\Gamma})$$

Relative Entropy of Entanglement (Similar bound for squashed entanglement)

For Hiding security states: $\exists \sigma : ||\rho^{\Gamma} - \sigma^{\Gamma}|| < \frac{1}{\sqrt{d}}$ by asymptotoc continuity of $E_R \approx ||\rho^{\Gamma} - \sigma^{\Gamma}|| \log d \approx 0$

There are bipartite states with $K_D \approx 1$, and $R \leq \frac{2 \log d}{\sqrt{d}} \approx 0$

Easy proof via partial transposition

For every protocol P of key swapping, which is LOCC(A:B:C) ...

Other bounds on key repeaters rate

Distillable entanglement E_D = Ratio: obtained e-bits / used states

Entanglement cost E_C = Ratio: obtained states / used e-bits

$$\begin{aligned} \mathsf{R}_{A\leftarrow C\leftrightarrow B}^{*}(\rho_{AC_{A}}\otimes\tilde{\rho}_{C_{B}B}) &\leq \frac{1}{2}E_{D}(\tilde{\rho}_{C_{B}B}) + \frac{1}{2}E_{C}(\rho_{AC_{A}}), \\ \mathsf{R}_{A\leftarrow C\rightarrow B}^{*}(\rho_{AC_{A}}\otimes\tilde{\rho}_{C_{B}B}) &\leq \frac{1}{2}E_{D}^{C_{A}\rightarrow A}(\rho_{AC_{A}}) + \frac{1}{2}E_{C}(\tilde{\rho}_{C_{B}B}) \\ &\leq \frac{1}{2}E_{D}(\rho_{AC_{A}}) + \frac{1}{2}E_{C}(\tilde{\rho}_{C_{B}B}). \end{aligned}$$

Application: there is a PPT state $\rho \otimes \rho^{\Gamma}$ (almost P.T. invariant), for which $K_D(\rho \otimes \rho^{\Gamma} \otimes \rho \otimes \rho^{\Gamma}) \approx 1$, but $R(\rho \otimes \rho^{\Gamma} \otimes \rho \otimes \rho^{\Gamma}) \approx \frac{1}{2}$

Alice & Charlie's states Charlie & Bob's state

Counterexample for entanglement of formation

Possible technique: degradation of key-swapping rate

Suppose there is entanglement monotone E such that:

1) $E(\rho_{out}) \le pE_D(\rho_{AC_A}) + (1-p)E(\rho_{C_BB})$ for o

 $\Rightarrow \text{ for a PPT state } \rho_{AC_A} (E_D = 0): \quad \frac{\text{degradation of } E \text{ to } (1 - p)^k E(\rho_{C_B B})}{\text{after using } k \text{ times key swapping}}$

If in addition:

2) $R(\rho_{out}) \leq E(\rho_{out})$

One would have degradation of key repeater rate Exemplary upper bounds: E_R , E_{sq} , E_F , E_C

Our result:

Entanglement of formation E_F and Entanglemen cost E_C does not satisfy the relation 1) i.e. can not be used to limit key repeaters by the above technique

Conclusions & Open problems

- There are states suitable for QKD, which essentially can not be shared at long distances via key repeaters
- Both in single copy and asymptotic case

Implications & some open problems

- Strong support for distillable-entanglement based quantum key repeaters. Is it that only distillable entanglement can be repeated ?
- What about the states invariant under partial transposition? [see K. H., Ł. Pankowski, M. P. Horodeccy PRL 2005 ; M. Ozols, G. Smith, J. Smolin PRL 2014]
- Supporting PPT-square conjecture [M. Christandl]
- More tight bounds ?

Commercial: Techniques and ideas presented here has far reaching applications: "Bounds on quantum non-locality via partial transposition" K.H & Gláucia Murta arXiv:1407.6999 (DI QKD)

Thank you for your attention!