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~—— Entanglement swapping

Task: sending quantum signals at large distances

Problem: decoherence
Classical solution: amplification of the signal

Quantum: amplification via coping is forbidded (no quantu ning !)
[Wootters, Zurek 1982]

The wayout: quantum repeaters

A subprocedure: entaglement swapping

teleportation ‘/N
Alice ‘/\‘ ‘/_\‘ Bob Alice Bob

—_—
\ Ch7’ Charlie
Ideal maximally entangled states [Zukowski et al. PRL 1993]

(e-bits)



Quantum repeaters

[ Briegel,Diir, Cirac 1998]
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T Alice " Charlie o Bob Yy copies
e-bits distillation of noisy distillable
by Local Operations entangled states
& Classical

Communication (LOCC) == = = =

Alices 5 Charlie i Bob

entanglement l swapping approximate

e-bit
Alice‘/\ Bob approximate

Charlie e-bit



~——Quantum repeaters as quantum

key repeaters

—— =

S Ahce/-\ch = le/% \ Many copies
e-bits distillation of noisy distillable
By Local Operations - l entangled states
And Classical
Communication (LOCC) ‘/\‘ ‘/\‘

e t Charlie

entanglement l swapping

Alice 0/\ Bob

Cliblieesrr .
we need not trust him!

Finally: QKD between Alice and Bob via any entanglement based protocol like
BBM, Eg2, BHK o5
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There are states which have key for QKD, but are useless for e-bit distillation

Is there another key swapping or quantum key repeaters protocol

which allows for distributing key using these states '?

(does not use teleportation ) .
Resource Noisy distillable state — Noisy state which has key
Protocol:

Teleportation — arbitrary 3-party LOCC(A:B:C) protocol

i, T i, Many copies
Alice/\ ./\ of noisy states p
Charlie Bob :

—> — with key

3-party LOCC _—

protocol v How much

./\. privacy here
Alice Bob




Main result

For some of the states p which are useful for QKD,
there does not exist efficient quantum key repeater

n states p witN o stat.es p with
~ 1 bit of key Q /Q ~ 1 bit of key
s S
Alice Charlie Bob

3-party LOCC _—

protocol *
Alice /\. Bob

more than € X n bits of key



th

States with |
/

: some p which are PPT approximate private bits has limited repeated key

mited repeated k

* (Quantum states that has at least 1 bit of ideal key are called Private bits

Structure of private state: ,twisted” singlet:

singlet ,2twisting”
d -m d e
7o =Ulwi Ny ®puslU™  where ! =ﬁ_§1:|"> U =Yij).(ij|®u
i= i j=1

e (Quantitatively: amount of privacy in state p is called distillable key :

inf limsup  Sup {m }

o . X =
Kp(p) = S SN TOCC Y n-An(P n) e Vm

[K, M, P Horodeccy &
J. Oppenheim PRL 2005]

 States with positive partial transposition (PPT) are (I Q®T)pup =0
useless for e-bit distillation (and teleportation)

Notation: p!

[M,P,R. Horodeccy PRL 1998]
Back to example:

Kp(p) = 1 = state useful for QKD secure under coherent attacks



~Seme approxim

Alice and Bob
in distance:

LOCC

distinguishing

Alice and Bob
meet:

Global
distinguishing

hide security

—_

approximate
private state

I==e
P B

Procc(p, o) < > I 7d

insecure B

(separable) Hiding

state security

states

Pc (,D; U) ~ 1

[see also K.H. Phd thesis '08]
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~—— Limitations on key swapping

One can not swap key using hiding security states

Proof ’Ad absurdum” suppose the following protocol P is possible:

/\ Protocol
- = = e
Alice Charlie Bob Alice Bob :
T / ? \ Alice &
Hidi ity states: : e some private state Bob join
1ding security states: 3 g : p, 5.0 (p, o) = P =
distinguish
P(p ® p)
SRS SRS P P(o ® o) from
Alice 7 Charlie 5°  Bob rAlce T Bob P(oc & o)
T pretty well!
(separable) state some separable state !

The protocol P(A:B:C) + protocol P’(AB) of discrimination = P” (AB : C)
which distinguishes between p and 6 ! = CONTRADICTION !




Asymptotic case

= limits on gquantum key repeaters

Asypmtotic definition of key repeater rate:

= inf limsu Sup m = ®n
RAHCHB(,DACA X PCBB) = 2 >f0n = ofAnLOCC, Vi {E:TTCAn ((PACA 0% pCBB) ) ~e V[mj}

i e e 5

Intermediate result:

22 - = Restricted
Raoccon (pACA X pCBB) < Dcoas (pACA X pCBB) < Relative
= = = Entropy of
Rycco B(PACA 0% pCBB) < D¢l ap (PACA 03¢ PCBB) Entanglement see
[Piani PRL'og]

Main result:

RA<—>C<—>B(:0ACA ® :56‘133)S D(?ZAB (pACA X pCBB) = D(,(‘)iAB (PF AC4 ®p" CBB) = ZER/(PF)

Relative Entropy of Entanglement

For Hiding security states: 3 ;||pl- o7 s (Similar bound for
; Vd squashed entanglement)

by asymptotoc continuity of E; = ||p'- o||logd =~ 0

e . 2logd
There are bipartite states with K = 1, and R < jg ~ 0 ‘




~—Easy proof via partial transposition

For every protocol P of key swapping, which is LOCC(A:B:C) ...
/\ /\ Protocol P /’\
Alice Charlie Bob —2 Alice T Bob

a Private state

.. there exist another protocol P1
Wthh acts on partially transposed states, p" with THE SAME output:

/\ /\ Protocol P1 ﬂ\

Alice Charlie p Bob > Alice Bob

Insummary: R(p ® p) =R(p' ® ph), =>  one line proof:

1
R(p ® p) =R(p" ® p) < Kp(p") < Er(p") < cllp” — 07| logd ~ == -0

Distillable secure key between / \

Alice and (Bob & Charlie) Asymptotic continuity
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Other bounds on key repeaters rate

Distillable entanglement E}, = Ratio: obtained e-bits / used states

Entanglement cost  E. = Ratio: obtained states / used e-bits

. o 1 _ 1
Ry culpac, @ poyp) < 5Ep(poyB) + 5Ec(pac,).

| . 1 1 .
R yccnB(pacy, ® pogp) < §Eg“_}'4{ﬂ.4cﬁ} + 5Ec(popB)

1 1 )
< EED[FHC'_J +5Ec(bopB).

Application: there isa PPT state p @ p' (almost P.T. invariant), for which

KD(Q ®/Pr®p\®pr) ~ 1,butR(p®pF®p®pF) ek

7\ :

Alice & Charlie’s states Charlie & Bob’s state
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“~Counterexam ple for entanglement
of formation

Possible technique: degradation of key-swapping rate

Suppose there is entanglement 1) E(poyt) < pEp (pAC A) + (1 —p)E(pcys)
monotone E such that: for o<p<1

— fora PPT state py¢, (Ep = 0): degradation of E to (1 — p)*E(pc,5)
after using k times key swapping

If in addition: 2) R(pout) < E(pout)

One would have degradation of key repeater rate
Exemplary upper bounds: Eg, Egq, Ep, E¢

Our result:

Entanglement of formation Er and Entanglemen cost E. does not satisfy
the relation 1) i.e. can not be used to limit key repeaters by the above technique




‘Conclusions & Open problems

There are states suitable for QKD, which essentially can not be shared
at long distances via key repeaters

Both in single copy and asymptotic case

/

Implications & some open problems

Strong support for distillable-entanglement based quantum key
repeaters. Is it that only distillable entanglement can be repeated ?

What about the states invariant under partial transposition? [see K. H.,
E. Pankowski, M. P. Horodeccy PRL 2005 ; M. Ozols, G. Smith, J. Smolin PRL 2014]

Supporting PPT-square conjecture [M. Christandl]
More tight bounds ?

Commercial: Techniques and ideas presented here has far reaching
applications: ,Bounds on quantum non-locality via partial transposition”

K.H & Glaucia Murta (DI QKD)


http://arxiv.org/abs/1407.6999

Thank you
for your attention!
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