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Spin-photon quantum interface
• Goal: to use single-photon pulses to link (distant) 

quantum nodes. Applications:
- quantum repeaters
- distributed quantum information processing

• Resource: indistinguishable photonic qubits (= the 
same spatio-temporal profile, center frequency & 
polarization) or entangled spin-photon pairs

𝜓𝜓 = ↑,𝐻𝐻 + | ↓,𝑉𝑉〉)/√2

H,V could denote any «internal» degree of freedom (color, 
polarization, orbital angular momentum, etc) of the photon



Outline

• A bright source of indistinguishable 
single photons

• Creation of quantum entanglement 
between a single photon and a 
condensed matter spin

• Teleportation from a propagating qubit 
to a solid-state spin



Solid-state spins & emitters

• Solid-state emitters (artificial atoms) can be used to realize 
high brightness long-lived single-photon sources: 
- no need for trapping
- easy integration into a directional (fiber-coupled) cavity
- up to 109 photons/sec with >70% efficiency

• Three different type of emitters:
- rare-earth atoms embedded in a solid matrix (Er in glass)
- Deep defects (NV centers in diamond)
- Shallow defects in semiconductors (quantum dots)

Note: While the concepts & techniques apply to a wide range of 
solid-state emitters, we focus on quantum dots
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Quantum dots
A quantum dot (QD), is a mesoscopic semiconductor 
structure (~10nm confinement length-scale) consisting of 
10,000 atoms and still having a discrete (anharmonic) 
optical excitation spectrum.



Quantum dots

• Neutral quantum dots (QD) are ideal for generation of 
single and entangled indistinguishable photons, thanks 
to near-transform limited emission lines.

A quantum dot (QD), is a mesoscopic semiconductor 
structure (~10nm confinement length-scale) consisting of 
10,000 atoms and still having a discrete (anharmonic) 
optical excitation spectrum.

Pulsed laser excitation + 
spontaneous emission
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Quantum dots

• Neutral quantum dots (QD) are ideal for generation of 
single and entangled indistinguishable photons, thanks 
to near-transform limited emission lines.

• Single-electron charged QDs allow for realization of a 
quantum interface between electron spin and 
generated photon via spin-state dependent light 
scattering, leading to spin-photon entanglement. 

A quantum dot (QD), is a mesoscopic semiconductor 
structure (~10nm confinement length-scale) consisting of 
10,000 atoms and still having a discrete (anharmonic) 
optical excitation spectrum.

-



Quantum dot Spectroscopy

Liquid He

From laser

To detector

Polarization  
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NA=0.65
Spot size ≈1µm
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=• Intensity (photon) correlation function: 

• To measure g(2)(τ), photons 
from a quantum emitter are 
sent to a Hanbury-Brown 
Twiss setup

How do we make sure that a light pulse 
contains a single photon: 

Photon correlations from a single QD

• Single quantum emitter driven 
by a pulsed laser: absence of 
a center peak indicates that 
none of the pulses have > 1 
photon (Robert, LPN).

⇒ Signature of a single-photon source

Time-to-
amplitude 
converterstart (voltage) pulse

single photon 
detectors

stop pulse
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• To measure g(2)(τ), photons 
from a quantum emitter are 
sent to a Hanbury-Brown 
Twiss setup

How do we make sure that a light pulse 
contains a single photon: 

Photon correlations from a single QD

• Photon correlations from a 
weak pulsed laser (<n> ~ 1); 
detection of a photon does 
not change the likelihood of 
detecting a second.

Time-to-
amplitude 
converterstart (voltage) pulse

single photon 
detectors

stop pulse

τ = 0
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How do we make sure that single-photons are 
not quantum correlated with any other system: 

Two-photon (HOM) interference
• Two completely indistinguishable single-photon pulses 

incident on a beam-splitter never lead to coincidences 
at the output due to a quantum interference effect.

• The single photon pulses have to have the same spatio-temporal 
profile, center frequecy, polarization.

• Indistinguishability ensures the absence of entanglement of single 
photons with uncontrolled degrees of freedom. 
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In a neutral QD, the elementary optical excitations are excitons 
(X0); the two linearly polarized exciton X0  lines are split due to 
electron-hole exchange by ~ 5 GHz

By controlling the pulse-shape, detuning and polarization of the resonant 
laser, we could generate a single-color photon or a two-color photonic qubit

A single-photon frequency-qubit from a QD: 
|ψ> = α|blue> + β|red>

Contrast limited by detector jitter



Interference of photonic qubits (superposition of 
blue and red photons) coming from two quantum dots

• Two distant QDs rendered 
«identical» using local electric 
and magnetic fields.

• 80% visibility in intereference 
of two photonic (color) qubits



Ω−

Γ: spontaneous emission rate

Ω: laser coupling (Rabi) frequencyΩ+Γ

• QD with a spin-up (down) electron only absorbs and emits σ+ (σ-) 
photons – a recycling transition similar to that used in trapped ions.
⇨ Measurement of a spin qubit: |ψ> = α|↑> + β|↓>

Quantum dots and spin qubits: 
Faraday geometry ( Bext = Bz)



Single-shot measurement of 
electron spin

• Prepare the electron spin in 
|↑> or |↓>

• Apply a 0.8 µs resonant laser 
pulse on the trion transition 
corresponding to |↓>

• Single-shot measurement 
fidelity ~ 80% in 0.8 µs

• Fidelity is limited by spin 
pumping into|↑> - long 
duration of excitation leads to 
initialization of the qubit.



Optical transition from a quantum dot 
spin qubit in Voigt geometry       

( Bext = Bx)
Excitation of a trion state results in either emission of a H polarized red
photon to |↓> state or a V polarized blue photon to |↑> state, with equal 
probability. 



Excitation of a trion state results in either emission of a H polarized red
photon to |↓> state or a V polarized blue photon to |↑> state, with equal 
probability. 

⇒ Spin-photon entanglement:   
potentially near-deterministic
entanglement generation at
~1 GHz rate

Similar results by Yamamoto, Steel groups; earlier work by Monroe,Lukin

Optical transition from a quantum dot 
spin qubit in Voigt geometry       

( Bext = Bx)



Procedure for spin-photon 
entanglement generation

Spin measurement/preparation
Entanglement 
generationπ Rotation

timet = 0

Repetition period = 13 ns



Measurement of classical correlations

An additional  π-pulse (dashed curve) 
is applied  to realize a heralded 
measurement in the spin-up state. 

Identical (unconditional) counts for red 
and blue photons confirm the 
selection rules.

The g(2) measurement shows that for 
the [1.2ns, 1.64ns] time range, 
probability of two-photon emission is 
negligible.

A spin down (up) measurement event 
ensures that the detected photon is 
red (blue).

F1=0.87+/-0.09 in the computational 
basis measure.ment
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Measurement of classical correlations

An additional  π-pulse (dashed curve) 
is applied  to realize a heralded 
measurement in the spin-up state. 

Identical (unconditional) counts for red 
and blue photons confirm the 
selection rules.

The g(2) measurement shows that for 
the [1.2ns, 1.64ns] time range, 
probability of two-photon emission is 
negligible.

A spin down (up) measurement event 
ensures that the detected photon is 
red (blue).

F1=0.87 ± 0.05 in the computational 
basis measure.ment



Measurement of quantum correlations

- An additional   π/2 or  3π/2-
pulse (dashed curve) is 
applied  to measure the spin 
in |↑> ± |↓>. 

- The data in b & c shows the 
coincidence measurement 
when π/2-pulse is applied. 

- The data in d & e shows the 
coincidence measurement 
when 3 π/2-pulse is applied. 

- F2=0.46+/-0.04 in the rotated 
basis measurement
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- An additional   π/2 or  3π/2-
pulse (dashed curve) is 
applied  to measure the spin 
in |↑> ± |↓>. 

- The data in b & c shows the 
coincidence measurement 
when π/2-pulse is applied. 

- The data in d & e shows the 
coincidence measurement 
when 3 π/2-pulse is applied. 

- F2=0.46+/-0.04 in the rotated 
basis measurement

⇒ Coherent oscillations in conditional
detection demonstrate quantum correlations
between spin and photon



Measurement of quantum correlations

- An additional   π/2 or  3π/2-
pulse (dashed curve) is 
applied  to measure the spin 
in |↑> ± |↓>. 

- The data in b & c shows the 
coincidence measurement 
when π/2-pulse is applied. 

- The data in d & e shows the 
coincidence measurement 
when 3 π/2-pulse is applied. 

- F2=0.46 ± 0.04 in the rotated 
basis measurement; overall 
fidelity F = 0.67 ± 0.05

W. Gao et al. Nature (2012)



Teleportation from a photonic qubit 
to a solid-state spin qubit

Input: 
photonic 
qubit:

Output: 
spin qubit

• Using spin-photon entanglement as a resource, we can transfer the quantum 
state of a flying photon onto a confined spin (W. Gao, Nat. Comm. (2013)



Teleportation from a photonic qubit 
to a solid-state spin qubit

Next step: probabilistic entanglement of two distant spins

Input: 
photonic 
qubit:

Output: 
spin qubit

• Using spin-photon entanglement as a resource, we can transfer the quantum 
state of a flying photon onto a confined spin (W. Gao, Nat. Comm. (2013)



Entanglement of distant spins

• We need spins with long coherence time: hole spin

⇑
⇓

rT
bT

xB
resΩ

0

0X

Ramsey measurements

Optically generated 
hole spin



Entanglement of distant spins
• Erasing which-path information in single-photon scattering 

from distant spins, leads to entanglement upon detection.

• Proposal by Cabrillo et al. Phys. Rev. A 59, 1025 (1999)



Future: Integrated spin photonics



Outlook

• Spin-photon quantum interface with decoherence-
free spin qubits (singlet-triplet states in QDs)

• Demonstration of nearly deterministic source of 
entangled photons using neutral QDs
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