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The promises of the Bell test

The Bell inequality has been proposed as a security test for E91.

Later this concept has evolved into device-independent security.

The implementation of the measurement system does not matter as
long as Bell’s inequality is violated (and the settings don’t leak out
from the laboratory).What is going on here, then?

φi ψj

Ai Bj

φi ψj

Realism: The result can be described by random variables

A(φi , ψj); B(φi , ψj) : Λ→ {±1}

Locality: The r.v.s are independent of the remote setting

Ai = A(φi , ψj); Bj = B(φi , ψj)

Then
∣∣E (A1B1) + E (A1B2)

∣∣ +
∣∣E (A2B2)− E (A2B1)

∣∣ ≤ 2

I This does not refer to the measurement setup at all,
but only the ±1 outcomes



Avhalance photodetectors can be blinded
Lydersen et al. (Nat. Photon. 2010) demonstrated an attack on
APD:s that allows remote control with bright illumination.
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This trick prevents a single-photon detector from seeing incoming pulses
below an intensity threshold IT . Only the second pulse will give a click.



The blinding attack was used to break the
security of E91
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Entanglement witnesses such as Bell inequalities are frequently used to prove the nonclassicality of a

light source and its suitability for further tasks. By demonstrating Bell inequality violations using classical

light in common experimental arrangements, we highlight why strict locality and efficiency conditions are

not optional, particularly in security-related scenarios.
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Introduction.—Experimental demonstrations of theo-
retical ideas require a reliable translation between the
mathematical objects used in the theory and a specific
setup of devices. In some instances trust may not be
warranted due to the unnoticed failure of some measure-
ment devices. In the context of quantum cryptography, a
warning was raised recently: the possibility of so-called
faked states [1]. In this scenario, honest scientists are
recording real measurement outcomes, performed by de-
vices that seemingly work as they should. What is ex-
ploited is the fact that a physical device, even in its
presumably normal state, may be sensitive to other degrees
of freedom than the ones that are thought to be relevant. For
instance, it is customary to encode qubits in (e.g., polar-
ization) states of the light field, but the field is much more
than a qubit and the ‘‘rest’’ may trigger a detector as well.

A parallel theoretical development, triggered by quan-
tum cryptography in conjunction with foundational stud-
ies, proposes an unexpectedly powerful solution to the
problem of trust using Bell’s inequalities [2]. These purely
statistical criteria can be checked without any knowledge
of the degree of freedom that is studied and of the mea-
surements that are performed—in fact, they are even inde-
pendent of quantum physics. Therefore, whatever physical
device leads to a violation of Bell’s inequalities can im-
mediately be labeled as nonclassical. This intuition can be
refined to provide device-independent criteria for secure
cryptography [3,4], trusted randomness [5], entangled
states [6,7], and measurements [8]. These works, together
with the parallel approach called self testing [9,10], show
that some quantum devices can be certified solely from the
observed statistics. There is a warning, though: trust should
be given if and only if the violation of Bell’s inequalities is
loophole free. In the context of Bell’s inequalities, a loop-
hole means that the observed statistics may in fact be due to

classical communication (‘‘locality loophole’’) or to shared
randomness (‘‘detection loophole’’). If a loophole is not
closed, the violation of Bell’s inequalities can be produced
by trivial classical means, for instance two suitably pro-
grammed and possibly causally connected computers.
It is widely accepted that the loopholes must be closed if

the devices are not fully characterized. Experimentalists,
however, assume to have an a priori knowledge that their
data are not generated by a pair of conspiring computers,
and may be tempted to adopt a more relaxed stance. A
warning against this complacency was issued when an
unplanned postselection of data led to a violation of
Bell’s inequalities larger than theoretically possible [11].
Bell experiments, in which one photon is sent through an
optical amplifier before detection [12] are another instance
where nonclosed loopholes can lead to misinterpretation of
results. Here we discuss another scenario: using faked-state
techniques [1,13–15], we show a fake violation of Bell’s
inequalities in the same conditions in which ordinary tests
with genuine entangled states are performed, by exploiting
the physics of single-photon detectors. In particular, two of
our experimental demonstrations feature no postselection
in a passive-choice scheme, and a third demonstration
features active choices, with a postselection that keeps
half of the data (more than any Bell experiment reported
to date). The takeaway message is that, when dealing with
a malicious adversary, it is necessary to close all the loop-
holes, even if the measurement devices are known to the
user and seem to behave normally.
Experimental Bell test.—With a typical setup to generate

entangled states we carry out polarization correlation mea-
surements (Fig. 1). A source of polarization-entangled
photon pairs based on parametric down conversion [16]
feeds each member of the pair to two legitimate parties,
Alice and Bob, who measure the polarization in one of two
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Gerhardt et al. (PRL 2011) successfully attacked a commercial QKD
system. Note, however, that their faked detector efficiency of the attack is
low (50 %).



The Franson interferometer

Source

−1
+1

−1
+1

φA φB

I Photon pairs are sent at unknown moments in time
I Some photons are delayed, and some are not
I If they are simultaneously detected (coincident), they can either

both be delayed or not
E (A(φA

i )B(φB
j )|coinc.) = cos(φA

i + φB
j )



The Franson interferometer

Source

−1
+1

−1
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φA φB

I The appropriate φA
i and φB

j give∣∣E (A(φA
1 )B(φB

2 )|coinc.) + E (A(φA
3 )B(φB

2 )|coinc.)
∣∣

+
∣∣E (A(φA

3 )B(φB
4 )|coinc.)− E (A(φA

3 )B(φB
4 )|coinc.)

∣∣ = 2
√

2
I The quantum-mechanical predictions violate the Bell inequality

(≤ 2) when we ignore the postselection.
I However, we will demonstrate an attack that imitates the

quantum prediction with classical light.



There exists a local hidden variable model
that gives the same predictions
Aerts et al. (PRL 1999) presented an LHV model that we will use and
modify for our attack.

0 π
2

π 3π
2

2π
0

1
2

1

θ − φA

r

A(φA) = +1E −1E

+1L −1L +1L −1L

+1E −1E +1E −1E

+1L −1L

0 π 2π
0

1
2

1

θ + φB

r

B(φB) = +1E −1E

+1L −1L

The hidden variables are θ and r .

Let’s combine this model with blinding!
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Two input pulses: φ changes the sign of the
outcome
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The LHV model for Bob uses two pulses
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Varying φB changes the sign but not the detection time.



For Alice we need to add complexity
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Varying φA changes both the detection time and the sign.



To simplify, we discretize the model
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With p = (2−
√

2)/4 we get the Bell value 2
√

2, just like the quantum
prediction.



Three input pulses controls time and sign
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Phase shifted input pulses do the trick.
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Three input pulses controls time and sign
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Experimental implementation



The experiment clearly violates Bell
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Our experimental faked Bell value is 2.5615± 0.0064. The efficiency is at
97.6 %. The reduction from 2

√
2 is caused by noise.
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But wait, there’s more!
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Let’s go back to Alice’s model and let p → 0.
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But wait, there’s more!
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But wait, there’s more!
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Extreme violations are possible
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The maximum experimental Bell value is as high as 3.6386± 0.0096,
imitating a Popescu-Rohrlich box. Efficiency is still at 97.6 %.



We can tune the attack to compensate for
noise

I The first attack produced a Bell value of 2.5615± 0.0064 when
we really wanted 2

√
2 = 2.828 . . ..

I However, Eve is free to combine pulses and phases to produce any
Bell value between 0 and 3.6386± 0.0096.
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Are there any countermeasures?

Our attacks works even if detectors have 100 % efficiency!

I Fast switching1: Not good enough2.
I Chained Bell inequality3: Challenging experimental requirements2.

The core of the problem for the Franson interferometer is the
postselection loophole.

There are time-energy-entangled systems without postselection:
Genuine energy-time entanglement4, Check out poster number 23.

1Aerts et al., PRL 1999
2Jogenfors and Larsson, JPhysA 2014 (Accepted), arxiv:1103.6131
3Braunstein and Caves, Ann. Phys. 1990
4Lima et al., PRA 2010 and Cuevas et al., Nat. Comm. 2013



We have attacked and conquered the
Franson interferometer

Our attack. . .

. . . can reach extreme Bell violations (up to 4)

. . . has very high efficiency: 96.7 %.

. . . can compensate for noise.

. . . makes all output statistics look like the quantum-mechanical
predictions.
. . . also works if the detectors are 100 % efficient.
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