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Side channel attacks can often be prevented by shielding the
hardware.

But it’s hard and costly to design mechanisms that can keep up with
the technological advances in attacks on the devices.



Can we mitigate these attacks via software only?

Short answer: yes. Enter leakage-resilient cryptography



In this talk:

I A way to design general leakage-resilient circuits via a detour to
quantum computation

I A classical result through a quantum argument



Not covered in this talk:

I Abstract definition of leakage resilience.

I All the ways to do (classical) leakage-resilient circuits through
fully classical means. (It’s a large field)



Leakage in this talk

Setup:

I A circuit is initialized with a secret.

I Adversary has black-box access to the device, and gets some
additional information (leakage) as a function of the circuit’s
wires.

Goal:

I Design circuit so that leakage is useless to adversary



What is leakage
quantum-mechanically?



a0|0〉B + a1|1〉B

|0〉E
a0|0〉B|0〉E + a1|1〉B|1〉E

Leaking the value of one wire produces entanglement with the
eavesdropper.
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Ũ

B

|0〉E
E

|ψ′〉ABE

y

x
Entangled

y
Not entangled

Reliable circuits are leakage-resilient



|ψ〉AB

A

Ũ
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Next steps:

I Implement reliable computation. (spoiler: fault tolerance)

I Only part of the implementation is necessary for classical
leakage-resilient circuits. Show how to do this part classically



Making quantum circuits
classical



We only need to perform classical computation, but there’s no
guarantee that an implementation of a reliable circuit will be fully
classical.
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Fault tolerance
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Leakage models and quantum noise

Independent leakage: each wire leaks with probability p.
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(Aliferis, Gottesman, Preskill, 2005): universal fault-tolerant
computation in the independent noise model
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|c〉

|a〉∣∣b〉∣∣a⊕ bc〉
Toffoli gate: universal for classical computation
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Bringing it all together

Theorem
Let C be an arbitrary quantum circuit with L locations and depth D.
Then for any ε > 0 there exists a quantum circuit C′, functionally
equivalent to C, with L′ = O(Lpolylog(L)) and depth
D′ = O(D polylog(L)), that is ε-reliable against independent noise,
as long as the probability of faults p satisfies p < 10−5.
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quantum information.
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