Tamper-Resistant Cryptographic Hardware in the Isolated Qubits Model

Yi-Kai Liu

National Institute of Standards and Technology Gaithersburg, MD, USA

Center for Quantum Information And Computer Science

How to build tamper-resistant cryptographic devices?

End goal: One-time programs Program can be run only once, on an input supplied by the user Intermediate results of the computation are <u>hidden</u> Related to program obfuscation and copy-protection

How to build tamper-resistant cryptographic devices?

How to build tamper-resistant cryptographic devices?

- Why is quantum information useful?
 - Quantum states cannot be cloned, measurement disturbs the state, etc.
 - But it's more subtle than that... quantum bitcommitment, oblivious transfer are <u>not</u> possible (Mayers; Lo and Chau)

Our results (1/2)

- One-time memories based on "conjugate coding"
 - Old idea due to Wiesner, <u>not</u> secure against quantum adversaries
 - We show how to instantiate it, so that it is secure against a natural sub-class of quantum adversaries

Y.-K. Liu, CRYPTO 2014

- "Isolated qubits model"
- Construction has several desirable properties:
 - "Single-shot security"
 - Security against general LOCC adversaries
 - Efficiently implementable
 - But it leaks information...

Our results (2/2)

- How to stop leakage: privacy amplification in the isolated qubits model
 - Usual solution: use an extractor, w/ random seed
 - Trouble: OTM's are non-interactive
 - No way to generate a random seed that is unknown to the adversary
 - Instead, use a deterministic extractor
 - Can be secure because adversary is restricted to LOCC

Isolated qubits are fun

- For theorists:
 - Another model, where many interesting cryptographic tasks are possible!
 - Known constructions seem very far from optimal!
 - Based on simple probabilistic constructions, crude bounds
- For experimentalists:
 - Another family of interesting quantum devices that can be realized
 - Very different from quantum repeaters
 - Want long coherence times, good single qubit operations, <u>no</u> entanglement swapping

This talk

- Overview
 - One-time memories, why they are useful
 - Isolated qubits model
- How to construct OTM's in the isolated qubits model
 - Leaky OTM's
 - Privacy amplification

One-time memories

- One-time memory contains two messages s,t
 - Adversary can choose to read s or t, but not both
 - "Non-interactive oblivious transfer"

One-time programs from one-time memories

• Use Yao's garbled circuits (Goldwasser et al, 2008)

One-time programs from one-time memories

One-time memories using qubits?

- Conjugate coding (Wiesner, ~1970)
 - Encode two classical bits (x,y) into one qubit
 - Measure in standard basis: learn x, w/ prob ≈ 0.85
 - Measure in Hadamard basis: learn y, w/ prob ≈ 0.85

One-time memories using qubits?

- Conjugate coding (Wiesner, ~1970)
 - Take two strings (s,t), apply a classical error-correcting code C, then encode using n qubits

- Bad news: can recover both messages, using many-qubit entangling operations
 - Run the classical decoding algorithm in superposition
 - Recover s without collapsing the superposition
 - Then repeat the procedure to recover t

Isolated qubits model

- We propose a new class of quantum devices: isolated qubits
 - Single qubit operations are allowed
 - Cannot perform operations that entangle multiple qubits
 - LOCC = "local operations and classical communication"
- Modeled on nuclear spins in solid-state materials
 - Easier to build than quantum computers
 - Can still be secure in a world with quantum computers

Related work

- "Nonlocality without entanglement" [Bennett et al, 1999]
 - There exist quantum operations that are "one-way" with respect to parties who are restricted to LOCC
- Quantum bit-commitment secure against k-local adversaries [Salvail, 1998]

Relies on interactive privacy amplification, won't work here

- Quantum bounded storage model [Damgaard et al, 2005]
- Quantum tokens [Pastawski et al, 2012]
- Password-based identification [Bouman et al, 2012]

This talk

- Overview
 - One-time memories, why they are useful
 - Isolated qubits model

How to construct OTM's in the isolated qubits model

- Leaky OTM's
- Privacy amplification

How to construct OTM's

- Step 1: Leaky string-OTM's
 - Conjugate coding
 - Device stores two strings, leaks at most a constant fraction of the information

Step 2: Deterministic privacy amplification

- "Almost-perfect" single-bit OTM
- Device stores two bits, leaks an exponentially small amount of information

Assume we have a leaky string-OTM

- Device stores two messages S and T, each ℓ bits long
 - Assume they are uniformly distributed
 - Ideal security goal: adversary can learn either S or T, but not both
- A weaker ("leaky") notion of security:
- For any LOCC adversary, $H^{\epsilon}_{\infty}(S,T \mid Z) \ge (0.5 \delta) \ell$
 - Z is the adversary's output

Step 2: Deterministic privacy amplification

- Given a leaky string-OTM, construct an "almost-perfect" bit-OTM
 - − Choose two (r-wise independent) random functions F, G: $\{0,1\}^{\ell} \rightarrow \{0,1\}$
 - Set ℓ , r to be polynomial in the security parameter k
 - Fix F and G permanently, as part of the construction

"Almost perfect" security

- With high probability over the choice of F and G, the following holds:
- For every LOCC adversary, there exists a binary random variable C, such that:
- $H^{\varepsilon}_{\infty}(A | C=0, Z) \ge 1 2^{-\Omega(k)}$
- $H^{\varepsilon}_{\infty}(B | C=1, Z) \ge 1 2^{-\Omega(k)}$
 - where Z is the adversary's output, and $\varepsilon \leq 2^{-\Omega(k)}$
 - Note: adversary's strategy may depend on F and G!
 - Random variable C comes from "entropy splitting" [Damgard et al]

- First, prove security wrt a single fixed meas. outcome
 - For any fixed measurement outcome M, with high probability over the random functions F and G, the scheme is secure
- Proof
 - Leaky string-OTM: $H^{\varepsilon}_{\infty}(S,T|M) \ge \Omega(k)$
 - − Entropy splitting: ∃ random variable C, $H^{\varepsilon}_{\infty}(S|C=0, M) \ge \Omega(k)$
 - Want to bound: $bias(A | C=0, M) = E_A((-1)^A | C=0, M)$ = $\Sigma_s (-1)^{F(s)} Pr(S=s | C=0, M)$
 - This is a sum of r-wise independent random variables $(-1)^{F(s)}$
 - Use Hoeffding-like large-deviation bound
 - Note $\Sigma_s \Pr(S=s | C=0, M)^2 = 2^{-\Omega(k)} \le 2^{-\Omega(k)}$

- Covering argument
 - Construct an ε-net for the set of all tensor product measurement outcomes
 - This has cardinality ≤ 2^{poly(k)} (singly, not doubly exponential, because adversary is restricted to LOCC measurements)

- Covering argument
 - Construct an ε-net for the set of all tensor product measurement outcomes
 - This has cardinality $\leq 2^{\text{poly}(k)}$
- Prove security at one point in the ε-net
 - For any fixed measurement outcome M, with high probability over the random functions F and G, the scheme is secure
 - Failure probability is $\leq 2^{-\text{poly}(k)}$

- Then use the union bound over all M in the $\epsilon\text{-net}$
 - With high probability over F and G, for all M in the ε-net (simultaneously), the scheme is secure

- Then use the union bound over all M in the ϵ -net
 - With high probability over F and G, for all M in the ε-net (simultaneously), the scheme is secure
- "Continuity argument"
 - Security does not change much when we perturb M
 - So for all tensor product M (simultaneously), the scheme is secure

Outlook

- Deterministic privacy amplification helps us to control information leakage
 - This helps to construct one-time programs...
 - Can our OTM's achieve <u>composable</u> security?

How to construct OTM's

- Step 1: Leaky string-OTM's
 - Conjugate coding
 - Device stores two strings, leaks at most a constant fraction of the information
- Step 2: Deterministic privacy amplification
 - "Almost-perfect" single-bit OTM
 - Device stores two bits, leaks an exponentially small amount of information

Step 1: Leaky string-OTM's

- To prepare the i'th block of qubits:
- If $\gamma_i = 0$, use the i'th block of C(s) and the $|0\rangle$, $|1\rangle$ basis
- If $\gamma_i = 1$, use the i'th block of C(t) and the $|+\rangle$, $|-\rangle$ basis

Step 1: Leaky string-OTM's

- To read **s**: measure qubits in standard basis
- To read t: measure qubits in Hadamard basis
- This is equivalent to receiving C(s) or C(t) through a q-ary symmetric channel

Choosing the code C

- To ensure security:
 - C should approach the capacity of the q-ary symmetric channel
 - C should be "unstructured"
 - One way to formalize this: let C be linear over GF(2)
 - Generator matrix has full rank
 - Suppose message S is uniformly distributed
 - Then codeword C(S) will have a large subset of bits that are uniformly distributed
 - Also, C should be efficiently decodeable

Good codes for the q-ary symmetric channel

Good codes for the q-ary symmetric channel

- For large q (growing with n), this approaches the capacity of the q-ary symmetric channel
- Efficient decoding: solving linear systems of equations over GF(2)
- Other constructions:
 - Interleaved Reed-Solomon codes, interleaved AG codes
 [Bleichenbacher et al; Shokrollahi; Brown et al]

Security proof

- Prove security against separable adversaries
 - Every POVM element is a tensor product of 1-qubit operators
 - Separable adversaries include LOCC as a special case
 - LOCC can be complicated: e.g., adaptive sequences of weak measurements

- Consider a fictitious adversary A' that measures each qubit once, such that M₁, M₂, M₃,... are possible outcomes
- Call this event M'

- Wlog, suppose the fictitious adversary A' measures this subset of qubits first
- When A' observes M_i for all i in this subset, call this event M"
- Want to analyze Pr(S,T|M'')

- Now run the experiment backwards...
 - Measuring a quantum state using a sequence of random BB84 bases
- Use an entropic uncertainty relation to lower-bound H^ε_∞(S,T|M")
 - Borrowed from the bounded quantum storage model [Damgard et al, 2006]

Outlook

- We have showed how to construct OTM's based on isolated qubits
 - Instead of isolated qubits, can we use more realistic models of the underlying hardware?
 - Noisy entangling operations?
 - Shallow quantum circuits?

Isolated qubits are fun

- For theorists:
 - Another model, where many interesting cryptographic tasks are possible!
 - Known constructions seem very far from optimal!
 - Based on simple probabilistic constructions, crude bounds
- For experimentalists:
 - Another family of interesting quantum devices that can be realized
 - Very different from quantum repeaters
 - Want long coherence times, good single qubit operations, <u>no</u> entanglement swapping

Isolated qubits are fun

- For theorists:
 - Another model, where many interesting cryptographic tasks are possible!
 - Known constructions seem very far from optimal!
 - Based on simple probabilistic constructions, crude bounds
- For experimentalists:
 - Another family of interesting quantum devices that can be realized
 - Very different from quantum repeaters
 - Want long coherence times, good single qubit operations, <u>no</u> entanglement swapping

