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Randomness = Secret
•A n-bit string X is random 

to a quantum system E if X 
cannot be perfectly 
guessed from E

•Uniform randomness: XE = 
UXⓧE, i.e. uniform on X 
and uncorrelated with E

•(n, k)-source: best guessing 
probability of X using E ≤ 
2-k

•k = n: uniform 
randomness

•k < n: weak randomness

•Error parameter: deviation 
of XE from UXⓧE

•True randomness: error → 
0 (as other parameters 
grow)
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We need randomness, a lot of it

•Randomness is critical

•Cryptography, privacy

•Fast randomized algorithms, e.g. physics simulation

•Gambling, ….

•1 T bits/day?
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“Ultimately the results of our study 
should serve as a wake-up call that 
secure random number generation 
continues to be an unsolved problem 

in important areas of practice.” 
           

          [Heninger+]  



How can we be sure it’s random?

Motivation::randomness extractors



Also a deep physics question

Motivation::randomness extractors



Also a deep physics question

•Does randomness exist at 
all?

Motivation::randomness extractors



Also a deep physics question

•Does randomness exist at 
all?

•We can’t possibly know

Motivation::randomness extractors



Also a deep physics question

•Does randomness exist at 
all?

•We can’t possibly know

•Assuming the world is not 
deterministic,  
Could there be almost 
perfect randomness?

Motivation::randomness extractors



Also a deep physics question

•Does randomness exist at 
all?

•We can’t possibly know

•Assuming the world is not 
deterministic,  
Could there be almost 
perfect randomness?

•Or, are we stuck with 
weak randomness?
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Randomness extractors: 
classical theory

•Model weak source by min-entropy

•Turn weak sources to true randomness

•Ensure randomness whenever assumptions are met

•Excellent constructions for seeded extraction (i.e. 
one source is uniform)
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Min-entropy source

Must be  
independent!
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How do we know it works?

•As classical beings, we cannot sense 
quantum directly

•Are we willing to trust the 
manufacturer or the certifying 
agency?

•Even yes, devices may not be reliable.

•Current technologies are prone 
to “noise”

Motivation::quantum approach



Untrusted Quantum Devices

Motivation::quantum approach

Adversary



Untrusted Quantum Devices

•Interact with quantum devices 
through classical interface

Motivation::quantum approach

Adversary



Untrusted Quantum Devices

•Interact with quantum devices 
through classical interface

•No assumption on the quantum 
inner-working

Motivation::quantum approach

Adversary



Untrusted Quantum Devices

•Interact with quantum devices 
through classical interface

•No assumption on the quantum 
inner-working

•Device can be imperfect or 
even malicious

Motivation::quantum approach

Adversary



Untrusted Quantum Devices

•Interact with quantum devices 
through classical interface

•No assumption on the quantum 
inner-working

•Device can be imperfect or 
even malicious

•May be in quantum 
correlation with the 
adversary and each others
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Can we still reap the quantum 
benefits without trusting the device?

•Untrusted-device quantum 
cryptography

•Started with Quantum Key 
Distribution [Mayers-
Yao’98, Barrett-Hardy-
Kent’05]

•Many recent works
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Goal

Create and expand true 
randomness using a single 

classical source and 
untrusted quantum devices
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•Physical Extractors [Chung-Shi-Wu]: a unifying 
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•Our results [Miller-Shi, Chung-Shi-Wu]
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[Colbeck’06, Colbeck-Kent’11]

•Turn an initial (uniform) seed to a longer true randomness

•Classical or restricted security proved by [Pironio+’10, Pinorio-
Massar’13, Fehr+’13, Coudron+’13]

•Quantum security proved by [Vazirani-Vidick’12]

• Also exponentially expanding: k bits -> exp(kc) bits
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[Colbeck-Renner’12]

•Q: “Are there fundamentally 
random processes in Nature?”

•Model weak randomness as an 
Santha-Vazirani (SV) source: 
x1, x2, …., xn, s.t. for a constant 
ϵ and any adversary’s side 
information e,  
Prob[xi =1| x1, x2, …, xi-1, e] ∈ 
[1/2-ϵ, 1/2+ϵ].

•[Colbeck-Renner’12]: 
sufficiently small ϵ;  
[Gallego+’13]: any ϵ<1/2; 
[Brandao’14]: constant number 
of devices

•All assume independence of 
the SV-source and the device 
conditioned on e.
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Figure 1: The general scheme of a physical randomness extractor. In the case of the physical resources
being t untrusted and non-communicating quantum devices, each quantum device is represented as
Di, 1  i  t. The quantum adversary E may be correlated with the min-entropy source X and in an
unknown quantum entanglement with the devices.

mathematical fact, but also allows the physical systems generating the weak randomness to consist
of multiple, strongly correlated sub-systems. Since our protocol is valid on arbitrarily weak random
source and achieves close to optimal quality parameter, we arrive at a stronger “dichotomy choice” [?]
that “either our world is fully deterministic or there exist in nature events that are fully random.”

Our work further provides a strongest possible mitigation to the “Freedom-of-Choice” loophole for
verifying quantum nonlocality through experimentally observing the violation of Bell Inequalities. A
sequence of recent research (e.g., see references in [?]) has demonstrated that such quantum violations
require the classical signals used in the experiments to be close to uniform. The “Freedom-of-Choice”
loophole refers to the possibility that the input signals do not reach the required level of randomness.
Since the world may very well be deterministic, the loophole cannot be completely closed. Our method
provides an approach for demonstrating Bell violations assuming only constant amount of min-entropy
in the initial randomness — by first running our protocol to produce true randomness, which is then
used directly for the Bell tests. The robustness feature further facilitates practical implementations
using the current technology.

Key elements of physical randomness extractors. We describe here several key elements in
our formal definition of physical randomness extractors. They are instrumental in facilitating rigorous
and intuitive reasonings and provide the necessary vocabulary for a more technical summary of our
results and in-depth discussions of our technical contributions. A comprehensive technical treatment
will be given in Section 3.

A untrusted-device (UD) physical system consists of a min-entropy source X, a set of t untrusted
devices D = (D1, · · · , Dt), and an adversary E. The system state describing the whole system is a
classical-quantum-quantum state ⇢XDE , where DE may be entangled arbitrarily and together they
hold certain quantum side information about X. As devices are untrusted, we do not assume their

4
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• Cryptographic security: errors = 
negligible in running time

• Robustness: constant level of noise

• Unit size quantum memory: allow 
in-between-rounds of 
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• Flexibility in building-blocks

• New proof techniques
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[Chung-Shi-Wu]

• Use just one min-entropy source
•can be known to Adversary: min-

entropy w.r.t. devices
•k can be arbitrarily small, e.g. a 

constant
• A reduction of seedless extraction to 

seeded extraction
•Tolerate constant noise by using 

Miller-Shi or Vazirani-Vidick (qkd)
• Tradeoff between error and #devices

• Error can be made close to optimal: 
exp(-kc) (lower bound: 2-k)

Model and Results::seedless extraction
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length

error=exp(-kc)



Application: robust unbounded 
expansion [CSW+MS]

Model and Results::applications



Application: robust unbounded 
expansion [CSW+MS]

Model and Results::applications

•Goal: k bits -> arbitrarily N-bits



Application: robust unbounded 
expansion [CSW+MS]

Model and Results::applications

•Goal: k bits -> arbitrarily N-bits

•Trivial by using log*N devices



Application: robust unbounded 
expansion [CSW+MS]

Model and Results::applications

•Goal: k bits -> arbitrarily N-bits

•Trivial by using log*N devices

•Robust by using Miller-Shi



Application: robust unbounded 
expansion [CSW+MS]

Model and Results::applications

•Goal: k bits -> arbitrarily N-bits

•Trivial by using log*N devices

•Robust by using Miller-Shi

•error dominated by the first term



Application: robust unbounded 
expansion [CSW+MS]

Model and Results::applications

•Goal: k bits -> arbitrarily N-bits

•Trivial by using log*N devices

•Robust by using Miller-Shi

•error dominated by the first term

•Constant number of devices through 
cross-feeding two expansion 
protocols [Fehr+’13]?



Application: robust unbounded 
expansion [CSW+MS]

Model and Results::applications

•Goal: k bits -> arbitrarily N-bits

•Trivial by using log*N devices

•Robust by using Miller-Shi

•error dominated by the first term

•Constant number of devices through 
cross-feeding two expansion 
protocols [Fehr+’13]?

•Yes: [Coudron-Yuen’13] based on 
VV’12+Reichardt-Unger-Vazirani’13: 
8 devices, non-robust



Application: robust unbounded 
expansion [CSW+MS]

Model and Results::applications

•Goal: k bits -> arbitrarily N-bits

•Trivial by using log*N devices

•Robust by using Miller-Shi

•error dominated by the first term

•Constant number of devices through 
cross-feeding two expansion 
protocols [Fehr+’13]?

•Yes: [Coudron-Yuen’13] based on 
VV’12+Reichardt-Unger-Vazirani’13: 
8 devices, non-robust

•CSW+MS: any expanding protocol 
safe for cross-feeding with doubled 
number of devices and about the 
same error

•Using Miller-Shi: robust, 4-
devices
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min-entropy
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Application: expanding key 
distribution [Miller-Shi]

•Robust untrusted device qkd 
first proved by Vazirani-
Vidick’13

•New in the adapted Miller-
Shi: exponentially expanding 
key with 2 devices 
(unbounded with 4)

Model and Results::applications
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Dichotomy between deterministic 
and fundamentally random world 

[Colbeck-Renner’12, Gallego+’13, CSW’14]

True randomness in Nature either does not exist or exist in 
almost perfect quality and unbounded quantity

v.s.

Untrusted-device protocols



Mitigating freedom-of-choice 
loophole

Generate true randomness from weak 
randomness, then run Bell test
Model and Results::physical interpretation
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during game

•Each device receives a bit, 
outputs a bit

•Device wins if a⊕b=x∧y 

•On uniformly random input, 
OPT quantum wins prob = .85 
> OPT classical = .75

•Bit a in OPT quantum uniform 
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k≅h(p) N uniform bits

• Play N sequential CHSH

• Choose a small number of 
games for testing ; others for 
randomness generation

• CYV’13: test independently 
with a small probability p

• Reject when losing too much in 
test rounds

• Input length h(p) N << N for 
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Figure 2: Our Physical Randomness Extractor PExt with parameters Ext, PExtseed, and ⌘. Ext is a

quantum-proof strong extractor 30 and PExtseed a seeded-PRE whose input length equals the output

length of Ext. For each distinct seed value i of Ext, run an instance of Ext with that seed value and

X as the source. Use the output Si as the input to a separate instance of PExtseed. Output the XOR

of the Zi’s, or abort if � ⌘ fraction of PExtseed aborted.
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devices

•Composed with the classical pre- and 
post-processing, each round is a 
single binary input/output device

•Proposition. The combined device 
always has a constant “trusted” 
measurement component.

•Trusted measurement device selects 
from anti-commuting measurements

•work: measures 0/1
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Challenges and solutions

•Adversarial devices: 
“Forcing Trust”, the pre- and 
post-processing's force all 
devices to have a “trusted” 
component 

•Uneven rate of randomness: 
“Amortized” analysis of 
randomness generation

•Quantify randomness 
generated at each step: 
Schatten norm

•Bounding randomness 
generated at each step: A 
new uncertainty principle

•Creating uniform input for 
seeded extractor: 
somewhere randomness 
from quantum-proof 
extractor

•Security in composing 
seeded protocols: 
Equivalence Lemma
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4. Open Problems



“Randomness capacity” of 
untrusted-devices

Open problems

•What quantifies the maximum amount of extractible 
randomness from (non-communicating) untrusted devices? 

•All published proofs require linear amount of entanglement 

• Is entanglement really needed?!



Maximum noise tolerable: the 
boundaries between quantum-

classical-no security

Open problems

•What is the maximum level of imperfection allowed for 
ensuring quantum security? 

•Trivial upper bound: quantum-classical gap 

•Another trivial but better (?) bound: quantum - OPT when 
output is deterministic 

• Is there a range of noise values that provide classical security 
but not quantum security?



Maximum output bit rate under 
noise

Open problems

•A more quantitative version of the previous question; 
important for practical use 

•Two ways to improve the rate under noise based on Miller-Shi 

• Improve the trust coefficient 

•Method for computing the optimal trust coefficient? 

• Improve the Schatten norm uncertainty principle



What are the most general class 
of games allowed?

Open problems

•Anything having a quantum-classical gap? 

•Kochen-Specker games?



Minimum device number for 
unbounded expansion

Open problems

•What is the minimum number of devices required for 
unbounded expansion? 

•MS+CSW: <= 4 

•3? 

•2? 

•3 for constant noise, 2 for almost perfect devices?
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seedless extraction

Open problems

•What is the minimum number of devices that can be used to 
extract from all (n, k) sources with a desired ϵ error? 

•CSW’s upper bound >= poly(n/ϵ) 

•Could it be polylog(n/ϵ) or even constant? 

•Possibly no… 

•For condensors (increasing min-entropy/length)?
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extract from all (n, k) sources with a desired ϵ error? 

•CSW’s upper bound >= poly(n/ϵ) 

•Could it be polylog(n/ϵ) or even constant? 

•Possibly no…



Optimal quantum-proof classical 
extractors

Open problems

•What is the shortest seed length allowed for a quantum-
proof classical extractor? 

•As a function of the source, output, and error parameters 

•Trevisan’s extractor [De et. al.’12]: log2(n/ϵ) log(m) 

•Just O(log(n/ϵ))?



Perfect Physical Extractor?

•A perfect physical extractor?  

•Optimizing all parameters simultaneously or necessary 
tradeoffs?

Open problems
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Forcing trust on adversarial 
devices

•Composed with the classical pre- and 
post-processing, each round is a 
single binary input/output device

•Proposition. The combined device 
always has a constant “trusted” 
measurement component.

•Trusted measurement device selects 
from anti-commuting measurements

•work: measures 0/1

•test: measures +/- (pass/fail)
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Forcing trust: the case of CSHS
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1

CCA

N

AB

=

0

BBB@

0 0 0 f (ei✓1 , ei✓2 )

0 0 f (ei✓1 , e�i✓2 ) 0

0 f (e�i✓1 , ei✓2 ) 0 0

f (e�i✓1 , e�i✓2 ) 0 0 0

1

CCCA

M

AB

=

0

BB@

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

1

CCA



Forcing trust: the case of CSHS

Method::seeded extraction

=+- +-MA

=

✓
0 1
1 0

◆

M

B

=

✓
0 1
1 0

◆

N

A

=

✓
0 x

x̄ 0

◆

N

B

=

✓
0 y
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+-• Proposition. There exists a constant v, 
0<v<1/√2, s.t. for any NAB, there exist T, N,  
• NAB = v T + (1/√2-v) N’ 
• TMA+MAT=0, ||N’||, ||T||≦1 and 

• Largest v: trust coefficient 
• v ≧ .15 

• 1-1/√2: coefficient for random coin flipping
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Quantifying randomness

•Smooth guessing probability 
Gϵ(ϱYE): characterizes 
extractible bits in a C-Q state 
ϱYE  
 

  Gϵ(ϱYE) = min {OPT prob. of 
guessing Y from E in ϱ’YE  : ||
ϱ’YE-ϱYE||≦ϵ}
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Quantifying randomness

•Smooth guessing probability 
Gϵ(ϱYE): characterizes 
extractible bits in a C-Q state 
ϱYE  
 

  Gϵ(ϱYE) = min {OPT prob. of 
guessing Y from E in ϱ’YE  : ||
ϱ’YE-ϱYE||≦ϵ}

•Difficult to bound Gϵ(ϱYE) 
directly

•Collision entropy Tr[ϱ2]: 
[DFW’14, TCR’09]  
 
Gϵ(ϱYE) ≦ (2/ϵ2) Tr[ϱ’2]

•No sensitive enough to detect 
generated randomness for 
small q. 

•Schatten norm Tr(ϱ1+q): turns 
out to be appropriate 
 
Gϵ(ϱYE)q ≦ (2/ϵ2) Tr[ϱ’1+q]
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Uncertainty Principle
•If the chance of passing is high, then the bit generated 

tends to be random

•Uncertainty Principle: the two measurement outcomes 
cannot be close to deterministic at the same time

Theorem. Let ϱ0, ϱ1, ϱP, ϱF, be the adversary’s “states” 
from measuring 0/1 and +/-, respectively. For sufficiently 
small δ and q,
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if Tr(ϱF
1+q) ≦ δ Tr(ϱ1+q),        Tr(ϱ0

1+q) + Tr(ϱ1
1+q) ≦ (1/2)qπ(q,δ) Tr(ϱ1+q)

1, when q, δ→0
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Amortized randomness 
generation

•The behavior at each round depends 
on the history

•If failing test, “toss a coin” and “loan” 
some randomness to the protocol

•Ensuring each step increase 
randomness

•Total amount of loans is small (few 
testing rounds)

•Fresh randomness still a lot

Method::seeded extraction

Geometrically decreasing: 
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Security under composition: 
Equivalence Lemma

• All known expansion protocols were 
proved assuming globally uniform 
input

• Equivalence Lemma: same 
performance using uniform-to-
device input

• All correlations with Adversary 
can be produced from global 
uniform input by an operator OP 
commuting with protocol

• OP does not change performance
Method::seedless extraction
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