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Fundamental rate-loss tradeoff 
for optical quantum key distribution



- Quantum Key Distribution can generate a shared key 
perfectly secret against any eavesdropper.

- Various (repeaterless) QKD protocols have been 
proposed so far.

- In all known protocols, the key rate decreases linearly    
with respect to the channel loss. 

Motivation



Various QKD protocols

Scarani et al., Rev. Mod. Phys. 81, 1301 (2009)
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- Secret key generation rate for the single-photon effcient BB84
Scarani et al., RMP 81, 1301 (2009)

Example1: Ideal single-photon BB84

- Ideal case

(efficient BB84 protocol)
Lo et al., J. Crypt. 18, 133 (2006)

Key rate (per mode, pulse)
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Scarani et al., RMP 81, 1301 (2009)

Example2: CV-QKD (GG02)

- Ideal case
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Garcia-Patron et al.,  PRL 102, 210501 (2009)
Pirandola et al., PRL 102, 050503 (2009)

Example3: Reverse Coherent Information

: von Neumann entropy of 

Reverse coherent information

For a lossy channel

with (infinitely strong) two-mode squeezed vacuum

Garcia-Patron et al.,  PRL 102, 210501 (2009)



Question

Is this a fundamental rate-loss tradeoff in any optical QKD?

Are there yet-to-be-discovered optical QKD protocols 
that could circumvent the linear rate-loss tradeoff
(without repeaters or trusted notes)?



Our result

- We show that this is not possible. 

- We prove that the secret key agreement capacity (private capacity) 
of a lossy optical channel assisted by two-way public classical 
communication is upper bounded by:
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(Rev. coh. info. LB)



- Generic point-to-point QKD protocol and its capacity 
(secret key agreement capacity assisted by two-way 

public classical communication)

- Squashed entanglement of a quantum channel 
as an upper bound on the two-way assisted SKA capacity

- Pure-loss optical channel

- Loss and noise optical channel

- Summary

Rest of the talk
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General secret key agreement assisted by 
unlimited two-way public classical communication
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General secret key agreement assisted by 
unlimited two-way public classical communication

General point-to-point QKD
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Secret key generation rate: R=k/n



Upper bound on the key rate: 
squashed entanglement of a quantum channel

: Squashed entanglement of a quantum channel
MT, Guha, Wilde, arXiv:1310.0129 

: Squashed entanglement 
(of a bipartite state        )

Christandl, Winter, J. Math. Phys. 45, 829 (2004)



Squashed entanglement
Squashed entanglement: Esq(A;B)

conditional quantum 
mutual information

Christandl, Winter, J. Math. Phys. 45, 829 (2004)

A B

E

Channel S should be chosen to squash the 
quantum correlations between Alice and Bob 
(the squashing channel)E’

- Entanglement measure for a bipartite state (LOCC monotone, …)
- Inspired by secrecy capacity upper bound in classical  theory (intrinsic information)



Squashed entanglement of a quantum channel

Definition:

where

A
A’

B



Main theorem

Proof outline

Esq(N) is an upper bound on the secret key generation rate R

1. Secret key distillation upper bound  
Christandl, et al., arXiv:quant-ph/0608119

2. New subadditivity inequality 
for the squashed entanglement

MT, Guha, Wilde, arXiv:1310.0129 

Theorem1



Proof outline

1. Secret key distillation upper bound  

Christandl, et al., arXiv:quant-ph/0608119

1. Monotonicity (does not increase under LOPC)

2. Continuity: if                          then

3. Normalization:

4. Subadditivity on tensor product states:  

γ: private state Horodecki et al, PRL 94, 160502 (2005)

Theory 3.7. Squashed entanglement                   is an upper bound 
on the distillable key rate from a tensor product state 

The statement is proved by using the following four properties:

The similar technique is applicable to our channel scenario 
except 4.



Proof outline

4. Subadditivity on tensor product states:  

Product state

Could be entangled
over n-channel use! 

?Can be replaced by 



A
B1

B2

≤

?

Proof outline

Subadditivity of Esq(N) ?

is true if one can show something like 
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Monogamy of entanglement

≥

Proof outline

Subadditivity of Esq ?
is true if one can show something like 

A
B1

B2

A
B1

A
B2

Koashi and Winter, Phys. Rev. A 69, 022309 (2004)



For any five-party pure state 

holds.

Lemma

MT, Guha, Wilde, arXiv:1310.0129

Proof outline

New subadditivity-like inequality

Proof consists of a chain of (in)equalities based on  

-Duality of conditional entropy for 

-Strong subadditivity for 

is not possible. 

However, we are able to show the following inequality:



implies

Proof outline

Subadditivity of 



Proof outline

1. Monotonicity (does not increase under LOPC)

2. Continuity: if                          then

3. Normalization:

4. Subadditivity:  

γ: private state

MT, Guha, Wilde, arXiv:1310.0129
For the details of the proof, see

From the following four conditions:

One can show
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Lossy bosonic channel

Need to find a good squashing channel 
(in a heuristic way...)

Pure-loss 
squashing 
channel

Alice Bob

Eve

Lossy bosonic channel

minimized at 

maximized with 

(Two-mode squeezed  
vacuum)



Lossy bosonic channel

Ns: a mean input power 
(average photon number of one share of the TMSV)
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Loss and thermal noise channel

Alice Bob

Channel model

Decomposition of the phase-
insensitive Gaussian channel

Caruso, Giovannetti, Holevo, NJP 8, 310 (2006)
Garcia-Patron et al., PRL 108, 110505 (2012)

Alice Bob
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Loss and thermal noise channel

Data processing inequality 
for quantum conditional mutual information
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Summary

- The secret key rate of any repeaterless QKD protocols 
in a lossy optical channel is upper bounded by  

- The bound is based on the squashed entanglement of a quantum 
channel, which is a general upper bound on the two-way classically 
assisted secret key agreement capacity. 

- Open problems
- True two-way assisted 

secret key capacity?
- Tight UB for a noisy channel?
- Finite block code analysis

MT, Guha, Wilde, arXiv:1310.0129

(weak converse)

(needs strong converse or second order analysis)





Finite n analysis

- Our upper bound is a weak converse
For the tight upper bound on finite block length, 
a strong converse or a second order analysis 
should be established.

- However, we can estimate the effect of finite block length
from our result. 



Finite n analysis

ε: secrecy (based on the 
trace distance criteria)

n: code length

200 km fiber (0.2dB/km loss)
Example in a pure-loss optical channel:
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