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Motivation for high-dimensional encoding

 QKD typically operates under “photon-starved” conditions
• component loss + propagation losses 
• long recovery times for detection system
• low flux at receivers; few detected coincidences
• ⇒ many empty time periods between detection events
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 High-dimensional encoding
• maximize throughput with limited number of detection events
• pack more bits per coincidence detection (multiple bits per photon)



Multiple-bit time-of-arrival encoding

Tf = 10 ns, τ = 1 ps, N = 104 (∼13 bits/photon-pair)
Potential raw key rates = 1.3 Gbps
(0.1 Gbps with binary encoding)

Tf

τ 1 pair coincidence

Tf /τ : N bins per frame

Initial concept and demonstration of large alphabet encoding: 
John Howell et al., PRL 98, 060503 (2007)

• Continuous-time encoding 
• Discrete-energy measurement (photon counting)



HDQKD (time-of-arrival encoding)

 Time-energy entangled-photon source
• high flux + single spatial mode + high entanglement quality

 WSi superconducting nanowire single-photon detectors
• high efficiency + short reset time + low timing jitter

 Efficient error correction and privacy amplification
• Multi-layer low-density parity check designed for HD encoding

 Security check against collective attacks
• dispersive optics or Franson interferometer

detector recovery period



Security of HDQKD based on time-energy entanglement
Apply security analysis technique for CVQKD to HDQKD:
Continuous time (arrivals) and frequency (detunings) as conjugate bases
Relate measurements to time-frequency covariance matrix (TFCM)
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Dispersive optics      Mower et al., PRA 87, 062322 (2013)

Franson interferometer        Zhang et al., PRL 112, 120506 (2014)
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Time-energy entangled-photon source

Spontaneous parametric downconversion (SPDC)
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Biphoton generation

Type-II phase-matched PPKTP waveguide

780-nm pump 1560-nm outputs
(orthogonally polarized)

• Efficient generation: 107 pairs/s/nm/mW (1.6 nm bandwidth)
• High extraction efficiency (∼80%) into single-mode fibers
• Naturally time-energy entangled; very little fluorescence

Zhong et al., Opt. Express 28, 26868 (2012)



Dispersive-optics QKD protocol

 Dispersive-optics QKD (DO-QKD)
• two dispersive conjugate measurement bases
• correct bases yield narrow time coincidence for key generation
• security check: correct bases, timing errors indicate eavesdropping
• choose frame size and bin duration in software; adjust dynamically
• retain frames with 1 detection event by Alice and Bob
• apply error correction and privacy amplification, finite key correction
• obtainsecure key capacity and secure key rate

Nonlocal cancellation of dispersion: J. D. Franson, PRA (1992)

Mower, Zhang, Desjardins, Lee, Shapiro, Englund, PRA 87, 062322 (2013)
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Dispersive optics HDQKD experimental demonstration

6 WSi SNSPDs: 
∼100 ps jitter
∼1 MHz max count rate
∼80-90% efficiency

ND: normal dispersion
AD: anomalous dispersion



DOQKD secure key capacity > 3 bpc

Mutual information
between Alice, Bob

Alice, Eve shared
Holevo information

Secure key 
capacity

Reconciliation
efficiency

Finite-key 
corrections

Parameters: 
•pair generation rate ∼9 MHz
•detector jitter 100 ps
•bin duration 80 ps
•propagation loss 0.2 dB/km
•detector efficiency 90%
•Alice’s system efficiency 10%
•Bob’s system efficiency 7%
•dark count rate 1 kHz

timing jitter and multipair emission
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Secure key rate > 270 kbps

Parameters: 
•pair generation rate ∼9 MHz
•detector jitter 100 ps
•bin duration 80 ps
•propagation loss 0.2 dB/km
•detector efficiency 90%
•Alice’s system efficiency 10%
•Bob’s system efficiency 7%
•dark count rate 1 kHz

Maximum throughput does not occur where key capacity is maximum
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Security based on high-visibility Franson interferometer

Entangled-
photon
source

Franson, PRL 62, 2205 (1989)

 Franson interferometer measures quality of time-energy (or time-bin) 
entanglement and its frequency correlation
• frequency correlation degradation  ε  VFranson ≤  1 - ε

 High visibility => small amount of frequency disturbance (by Eve)
• Franson measurements bound Eve’s Holevo information
• visibility limited by multi-pair emission and differential dispersion 

between long and short paths of each arm



Dispersion-compensated Franson measurements  

uncompensated    
dispersion compensated locally
dispersion compensated nonlocally

99.6 ± 0.2 %

accidentals included

PRA 88, 020103(R) (2013)



HDQKD with Franson security check



Franson-based HDQKD results

HDQKD Improvement
500x throughput

Franson visibility 
measurements 

bound Eve’s Holevo
information

Comparison with BBM92 [Treiber et al., New J. Phys. 11, 045013 (2009)]

BBM92 Franson HDQKD
Secure bits/coincidence 0.35 7.5

Secure key rate 14.5 kbps 7.1 Mbps
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Franson HDQKD results versus distance

Secure PIE stays unaffected:  7.1 bits per coincidence
Secure key rate drops due to fiber loss



Summary

 Entanglement-based QKD with high dimensional encoding
– multiple bits per coincidence
– efficient error correction and privacy amplification
– high flux single-spatial-mode PPKTP waveguide source
– efficient WSi superconducting nanowire single photon detectors
– security checks tightly bound Eve’s Holevo information

 HDQKD security protocols
– dispersive optics (oppositely chirped fiber Bragg gratings)
– single Franson interferometer that does not degrade with loss

 High secure key capacity and throughput
– dispersive optics: > 3 bpc, > 270 kbps
– Franson: > 7 bpc, > 7 Mbps
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