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INTRODUCTION

Shared entanglement underlies many quantum information protocols such as quantum key distribution (QKD) [1],
teleportation [2] and dense coding [3], and is a fundamental information resource that can boost reliable classical and
quantum communication rates over noisy quantum channels [4, 5]. Optical photons are arguably the only candidate
for distributing entanglement across long distances. They however are susceptible to loss and noise in the channel,
which is the bane of practical realizations of long-distance quantum communication. In order to generate entanglement
over long distances at high rates, intermediate nodes equipped with quantum processing power must be interspersed
along the lossy channel. Quantum repeaters are one example of such nodes that can help circumvent the linear rate-
transmittance fall-o↵ of the unassisted lossy channel also known as the TGW bound [7]. However, not all quantum
devices, for example quantum-limited phase-sensitive amplifiers, can serve as e↵ective intermediate nodes for improved
quantum communication performance over the unassisted pure-loss channel [8].

Several quantum repeater protocols have been proposed, most of which use entanglement swapping by Bell-state
measurements, and quantum memories, of some form (see [9] for a recent review). The basic quantum repeater protocol
probabilistically connects a string of imperfect entangled qubit pairs by using a nested entanglement swapping and
purification protocol, thereby creating a single distant pair of high fidelity [10]. If used for QKD, those final distant
entangled pairs are measured by Alice and Bob in randomly-chosen mutually-unbiased bases, followed by sifting,
error-correction and privacy amplification over a two-way authenticated classical channel, to generate a shared secret.
An alternative (the DLCZ) repeater protocol [11] uses a chain of elementary links between pairs of atomic memories
prepared with single-photon entangled states, followed by a distant heralded interferometric conversion of two copies
of such entangled states into a two-photon entangled state. Repeater protocols usually rely on purifying multiple
long-distance imperfect shared entangled pairs (into fewer pairs of high fidelity)—a procedure known as entanglement

distillation. As an alternative to entanglement distillation, several forward-quantum-error-corrected protocols have
been proposed and analyzed [12, 13], which can a↵ord a better rate performance at the expense of more frequent
memory-based repeaters capable of universal quantum logic. Some of the more recently proposed forward-coded
protocols do not even need any matter quantum memories [14, 15], but come at the expense of fast universal quantum
logic and feedforward at all-optical center stations, which is challenging.

In [16], a repeater architecture was proposed that uses photon-pair sources, spectral-multiplexing, multi-mode
quantum memories, linear-optic Bell-state measurements [17, 18], and classical-only error correction. This protocol
does not rely on purification, and does not require hierarchical connection of the elementary links (i.e., multiple
connections can proceed simultaneously), and thus the memory coherence time requirements and the system’s clock
speed are not driven by long-distance classical communication delays. The protocol allows the fidelity (of the end-
to-end shared entangled state) to deteriorate as the chain lengthens, and finally uses classical error correction on a
long sifted sequence of correlated pairs of classical data generated by measurements by Alice and Bob, to extract
quantum-secure shared secret keys.

The work summarized in this abstract is part of two papers [19, 20]. In [19], we have a rigorous calculation of its
achievable rate-vs.-loss performance—both entanglement-distillation and secret-key generation rates—in the presence
of various loss and noise detriments, and show that it can fundamentally outperform the TGW bound [7]. To our
knowledge, we provide one of the first explicit calculations of the rate-vs.-loss function of any quantum repeater
protocol with lossy and noisy components. Although, we analyze the scheme proposed in [16], our method can be
carried over to other repeater schemes as well. All of our analysis assumes that the sources are perfect (i.e., have
no two or higher photon pair terms). We also perform numerical simulation of the key rates for sources with non-
zero higher photon pair terms. All the simulations and analytic results assume that the detectors are single photon
detectors (i.e., they have no photon number resolution).

⇤
This work is described in two papers. The first one [19] can be found on the arxiv (1404.7183). The second paper [20] is attached along

with this abstract and will be posted to the arxiv soon.
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(a) Deterministic sources with single photon detectors
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(b) SPDC sources with PNR detectors

Figure 1: Rate vs. loss in the case of deterministic (ideal) and SPDC (non-ideal) sources.

In [20], we investigate the e↵ect of having photon number resolving (PNR) detectors. The results in this paper are
entirely numerical with the realistic device parameters of loss and noise as in [19]. In this paper, the focus is on finding
a practical repeater scheme by assuming that the sources are not deterministic (since deterministic sources are hard
to produce). In particular, we consider the issue of realizing quantum repeaters with down-conversion sources and
two-photon interference, and we show that this approach can in fact lead to impressive quantum repeater performance,
provided that there are two additional elements, namely highly multi-mode quantum memories and photon-number
resolving detectors. Multi-mode memories help to compensate for the requirement of working with low pair emission
probability, and photon-number resolving detectors make it possible to greatly suppress the remaining errors due to
multi-pair emissions. Both highly multi-mode memories and photon-number resolving detectors are under very active
development at this point. The main conclusion from our study in [20] is therefore that truly practical quantum
repeaters may be within reach. Our results also show that in designing quantum repeater architectures there are
interesting trade-o↵s between the performance and capabilities of the di↵erent components, i.e. in the present case,
pair sources, memories, and detectors.

ANALYTIC RESULTS

We present a complete analytical characterization of the evolution of the end-to-end shared-entangled state in a
concatenated quantum repeater chain and evaluate its performance for QKD. We account for several common device
non-idealities except for sources, which we assume are ideal.

• We analyze QKD using the aforesaid repeater chain as an example application, and obtain an exact expression for
the secret key rate as a function of loss, number of swap stages, and various loss-and-noise parameters of the channel
and detectors. We account for fiber loss, detector dark counts, detector ine�ciency, multi-pair emission rates of the
entanglement sources, and loss in loading (readout) into (from) the quantum memories.

• We find a compact scaling law for how the quantum bit error rate (QBER)—the probability that Alice and Bob
obtain a mismatched sifted key bit despite measuring their halves of the entangled state in the same bases—scales
up with increasing number of swap levels. This analytical scaling has practical importance, since an experimentally
measured QBER on a single elementary link can be used to predict the QBER (and hence the key rates) practically
obtainable over a long-distance channel that is constructed with multiple elementary links made with identical
imperfect devices. Our calculation involves a detailed analysis of the Bell-swap operations by modeling imperfect
single-photon detectors with appropriate positive-operator-valued-measure (POVM) elements, and solving a variant
of the logistic map, a non-linear di↵erence equation whose solutions are known to be chaotic in general [25].

• Our calculations show that the aforesaid repeater chain, even if built using lossy and noisy devices, attains an
overall rate-loss scaling for QKD that outperforms the TGW bound—the best performance achievable by any QKD
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Figure 2: Secret key rate vs. distance for di↵erent values of p(2).

protocol that does not employ quantum repeaters. To be precise, if ⌘ 2 (0, 1] is the end-to-end transmittance of
the Alice-to-Bob channel, we show that by dividing up the channel into an optimum number of repeater nodes, the
secret key rate achieved by the repeater chain, R = A⌘⇠. The pre-factor A and the power-law exponent ⇠, 0 < ⇠ < 1
are constants that are functions of various loss and noise parameters of the system (Fig. 1a).

• Furthermore, since we calculate the exact quantum state after every swap stage, our results can be used to calculate
any other quantity of interest, such as fidelity, for other applications of long-distance shared entanglement.

NUMERICAL RESULTS

In our analytical results, while we take into account several di↵erent device imperfections, we assume that the
sources are deterministic. In order to take into account non-zero p(2), we set up a detailed numerical simulation of
the repeater architecture. We obtain the following results.

• When single photon detectors (i.e., non number resolving detectors) are used, even a small amount of p(2) has a
very detrimental e↵ect on the secret key rates. This is shown in Fig. 2. This figure depicts the rapid deterioration
as p(2) is increased with all the other parameters kept constant.

• Even for sources with p(2) > 0, our analytical prediction of QBER propagation through the repeater chain is
shown to hold, albeit with a p(2)-dependent modification to a pre-factor. Using the above phenomenological model
of QBER propagation, we show that positive two-pair probability p(2) is shown to deteriorate the rate-distance
function in a particular way described in more detail in [19].

• We investigate the performance when single photon detectors are replaced by photon number resolving (PNR)
detectors. We find that the performance is enhanced tremendously even in the presence of non-zero p(2). In fact,
as explained in [20], we find that using parametric down-convertor sources (SPDC), which have two pair and higher
pair terms as well, with PNR detectors seems to be a feasible experimental goal for the near future. We find that
the rate-loss envelope of the plots for di↵erent numbers of repeaters beats the TGW bound and, in fact, comes close
to the scaling for deterministic sources and single photon detectors (although the multiplexing needed for SPDC
sources is higher). This is shown in Fig. 1b.
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Conventional wisdom suggests that realistic quantum repeaters will require quasi-deterministic
sources of entangled photon pairs. In contrast, we here study a quantum repeater architecture
that uses simple parametric down-conversion sources, as well as frequency-multiplexed multimode
quantum memories and photon-number resolving detectors. We show that this approach can sig-
nificantly extend quantum communication distances compared to direct transmission. This shows
that significant trade-o↵s are possible between the di↵erent components of quantum repeater archi-
tectures.

I. INTRODUCTION

The distribution of quantum states over long distances
is essential for applications such as quantum key distri-
bution [1] and a future “quantum internet” [2]. The
distances that are accessible by direct transmission are
limited by photon loss. Some form of quantum repeater
[3] architecture will be required to overcome this bar-
rier. On the one hand, approaches based on quantum
error correction [4] or satellite links [5] promise quantum
communication over global distances in the long term,
but have significant resource requirements. On the other
hand, there is also a lot of interest in simpler approaches,
where the focus is on significantly outperforming direct
transmission in the short or medium term [6].

The first concrete proposal for a quantum communica-
tion architecture with relatively modest resource require-
ments was the well-known DLCZ protocol [7], which is
based on atomic ensembles that serve as photon sources
and quantum memories. This proposal stimulated a lot
of experimental work [8], but it was soon recognized that
the achievable repeater rates were still too low. A poten-
tial solution was put forward in [9], which proposed to
implement a multiplexed version of the DLCZ protocol
combining parametric down-conversion sources (which
are comparatively simple to implement) and multimode
quantum memories. Such memories are now being de-
veloped very intensively, in particular in rare-earth doped
crystals [10, 11].

Unfortunately, the protocol of [9] (just as the DLCZ
protocol) relies on single-photon interference to create en-
tanglement in the elementary repeater links, and thus re-
quires interferometric stability over long distances, which
is a major practical challenge. This di�culty can be
avoided by designing repeater protocols where the ele-
mentary entanglement creation is based on two-photon
interference [12, 13].

However, in the present context, relying on two-photon
interference also means relying on simultaneous single
photon pair emissions from two di↵erent sources, so that
one photon from each pair can interfere. It is then chal-
lenging to work with parametric down-conversion sources

because they can always emit multiple pairs, which typic-
ally causes errors. Some of these errors can be eliminated
by working with small emission probabilities, but this has
a large negative impact on the achievable rates. Other
types of errors cannot be eliminated at all in this way.

Past proposals therefore focused on quasi-deterministic
sources of entangled photon pairs, which can in principle
be realized using individual emitters such as atoms or
quantum dots [14], more indirectly by using non-ideal
sources in combination with quantum memories, or by
combining parametric down-conversion with strong non-
linearities [15]. While many of these approaches seem
promising in the longer term, they all pose significant
practical challenges in the short and medium term.

Here we adopt a di↵erent approach. We reconsider
the issue of realizing quantum repeaters with down-
conversion sources and two-photon interference, and we
show that this approach can in fact lead to impress-
ive quantum repeater performance, provided that there
are two additional elements, namely highly multi-mode
quantum memories and photon-number resolving detect-
ors. Multi-mode memories help to compensate for the re-
quirement of working with low pair emission probability,
and photon-number resolving detectors make it possible
to greatly suppress the remaining errors due to multi-
pair emissions. Both highly multi-mode memories and
photon-number resolving detectors are under very active
development at this point. The main conclusion from our
study is therefore that truly practical quantum repeat-
ers may be within reach. Our results also show that in
designing quantum repeater architectures there are inter-
esting trade-o↵s between the performance and capabilit-
ies of the di↵erent components, i.e. in the present case,
pair sources, memories, and detectors.

II. REPEATER ARCHITECTURE

A. Description of the Scheme

The architecture that we consider is similar to that
proposed in [13] and analyzed in detail in [16], but with
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Figure 1. Schematic of quantum repeater architecture [13].
Top Level: The channel is divided into N elementary links,
each with a spectrally-resolving BSM (⌫RBSM) at its cen-
ter, and with Repeater Nodes (REP) connecting each pair of
links. Middle Level: Detailed view of Repeater Node. Each
REP contains two PDC sources of frequency-multiplexed bi-
partite entanglement, two quantum memory units (QM) and
a number-resolving BSM (NRBSM). Bottom Level: Detailed
view of QM and NRBSM. Each QM unit contains a multi-
mode atomic quantum storage device (⌧), a frequency-shifting
unit (�⌫) and a frequency filter (⌫0), while each NRBSM
contains a simple linear-optics circuit followed by two single-
photon detectors. See main text for a detailed description of
the functioning of the architecture

the key di↵erence that we consider parametric down-
conversion sources and photon-number resolving detect-
ors, instead of close to ideal pair sources and non-number
resolving detectors.

The architecture is depicted schematically in Fig. 1.
The total distance between Alice to Bob is divided into
N elementary links. At either side of the elementary link
is a repeater node (REP) containing a parametric down-
conversion source (PDC), which sends one half of an en-
tangled state to the center of the elementary link through
a fiber. At every time step entangled states are created in
a large number of modes M . We envision M of the order
105, which can be achieved mainly by using many distinct
frequency modes, although a moderate degree of spatial
multiplexing may also be beneficial. The entanglement in
each mode can be in polarization or temporal/time-bin
degree of freedom, as our discussion applies equally to
either encoding. At the center of each elementary link, a
frequency-resolving linear-optic Bell-state measurement
(⌫RBSM) [17] is performed on the state comprising of
the halves of the two entangled pairs coming from each

side. This creates an entangled state across the element-
ary link by entanglement swapping. The ⌫RBSM consists
of a simple linear optical circuit followed by a spectrally-
resolved detector array, which can detect across a range
of frequencies. Note that the e�ciency of a linear optical
BSM can at most be 50% for each mode [18].

The other half of each of the entangled states produced
by the sources is locally loaded into a multi-mode atomic
quantum memory (QM) [13]. For realistic link lengths,
most of the photons produced by the sources will be
lost in transit. However, if one chooses a large num-
ber of modes M , then a successful swap for at least one
of them occurs with a high probability. At this point,
this frequency information (i.e. the successful frequen-
cies) is transmitted to the memories on either side of the
elementary link (dashed lines and envelopes in Fig. 1).
Now, each repeater node (REP) receives a pair of which-
frequency information from the two elementary links on
either side. It uses this information to translate the fre-
quency of the modes (device labelled �⌫) on either side
to a pre-determined common frequency and filter away all
other modes (device labelled ⌫0) [13], and thereafter per-
forms a linear-optic BSM (with number-resolving detect-
ors, see below) to do entanglement swapping (⌫RBSM). If
this BSM is successful, the states across two elementary
links are connected to create an entangled state across
both of them. This process is continued until we obtain
an entangled state across Alice and Bob. Alice and Bob
can now use this entanglement for tasks such as quantum
key distribution or quantum teleportation. For the case
of quantum key distribution, secret key rates can be de-
termined following the approach of [16].

B. Parametric Down-Conversion Sources

We now describe the entangled state generated by the
parametric down-conversion sources in more detail. For
each of the M (frequency) modes discussed above, each
source generates a multi-photon entangled state of the
form | i = e�iHt|vaci, where

H = ig(a†
0b

†
1 � a†

1b
†
0) + h.c., (1)

where the coupling constant g is proportional to the
pump laser amplitude and nonlinear coe�cient of the
crystal, the creation operators ai and bi refer to the two
“halves” of the entangled state discussed above, and the
index i = 0, 1 refers to the degree of freedom in which the
entanglement is prepared, i.e. either polarization or time
bins. Each “mode” in our above terminology therefore
really corresponds to four physical modes a0, a1, b0, b1.
One can show that [19]

| i =
1X

n=0

p
n + 1 tanhn gt

cosh2 gt
| ni, (2)
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with

| ni =
1

n!
p

n + 1
(a†

0b
†
1 � a†

1b
†
0)

n|vaci =

nX

m=0

(�1)m|n � m, m; m, n � mi, (3)

where |n � m, m; m, n � mi signifies a state with n � m
photons in mode a0, m photons in mode a1, m photons
in mode b0 and n � m photons in mode b1.

In the context of the quantum repeater protocol de-
scribed above, only the term with n = 1, corresponding
to the emission of a single entangled photon pair, is de-
sired. The case n = 0 means that no photons were emit-
ted at all, whereas the terms with n � 2 correspond to
multi-pair emissions, which a priori introduce errors. We
now discuss how these errors can be greatly suppressed
using photon-number resolving detectors.

C. Suppression of Multi-photon Errors using
photon-number resolving detectors

[16] analyzed multi-pair errors in the context of the re-
peater protocol of [13] (i.e. for much more ideal sources
than parametric down-conversion) and found that they
severely limit its performance. This analysis was done for
ordinary single-photon detectors, which do not count the
number of photons. However, photon-number resolving
(PNR) detectors are being developed and have reached
impressive performance levels [20]. We now show that the
use of such detectors allows one to greatly alleviate the
problems associated with multi-pair emission by down-
conversion sources. In fact, we show that ideal PNR de-
tectors would allow one to eliminate the associated multi-
photon terms completely in this repeater architecture.

The improved performance with the use of PNR de-
tectors can best be understood by first considering per-
fect PNR detectors (i.e. 100% e�ciency and no noise).
We argue that by post-selecting the outcomes corres-
ponding to single pair terms at the repeaters as well
as by Alice and Bob, one can completely eliminate the
multi-photon errors, provided that the repeater stations
(and Alice and Bob) have PNR detectors with no dark
clicks. At the center of each elementary link one can use
either ordinary single photon detectors or PNR detectors
as long as there are no dark clicks in them. With this
setup, one can post-select the outcomes corresponding to
single pair terms at Alice’s and Bob’s ends. This means
that Alice and Bob wait for a single click in their de-
tectors (which are PNR) and so they know for sure that
they have a single photon. This, in turn, means that
the entanglement source closest to them has produced
the correct state. For simplicity, let us focus on the case
when there are two elementary links with a repeater in
the center i.e., one elementary link between Alice and
the repeater and one between Bob and the repeater. In
this case, the center of the elementary link has the right
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Figure 2. Secret key rate vs. distance for SPDC sources with
PNR detectors. The solid black line is the TGW bound and
the solid blue line is the achievable rate using E91 protocol
and perfect detectors.

state on one side. If the Bell swap results in two detector
clicks, this means that the other side of the elementary
link must have had one or more photons. Now reasoning
similarly from Bob’s side, we arrive at the fact that at
the repeater station, the two sources on either side have
produced one or more photons. But since the repeater
has perfect PNR detectors and we post-select the two
photon outcome, we can be sure that the two sources on
either side have produced a single pair (i.e., the correct
state). Finally, this implies that Alice and Bob share a
perfect entangled state. This analysis can be extended
to any number of elementary links under the same condi-
tions i.e., the repeaters (and Alice and Bob) have perfect
PNR detectors and the elementary links have detectors
with no dark clicks. This shows that by post-selecting on
the single click outcomes by Alice and Bob and the two
click outcomes for the repeaters, we can obtain a good
entangled state across Alice and Bob. In the presence
of detector imperfections such as non-unit e�ciency and
dark counts, the generated state is no longer perfect, but
the fidelity can still be high. In the next section we show
what secret key rates should be achievable under realistic
conditions with this approach.

III. RESULTS ON REPEATER RATES

To quantify the performance of this protocol we util-
ized our previously developed MATLAB code which can
evaluate entanglement generation and secret key rates
across a chain of repeater nodes, accounting for multiple
sources of imperfections including detector ine�ciency
and dark counts, multi-pair emission in the sources,
memory lifetime and read/write ine�ciency, mode mis-
matches in Bell measurements, and photon loss in optical
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components. Our analysis propagates the density mat-
rix state present in a single (frequency) mode, initializing
with the entangled states created at the sources given in
Eq.(4) and then transforming directly through lossy fiber
and then beam-splitters and other components to per-
form Bell-state measurements at the center of each ele-
mentary link. The total Hilbert space we track includes
states with up to 4 total photons. When a state comes
upon a detector a two outcome POVM is applied, cor-
responding to a “click” or “no click” event, as described
in Appendix A of [16]. The POVM properly accounts for
the detector ine�ciency and dark counts. The remaining
(undetected) modes continue to propagate through the
remainder of the system. Any instance in which the num-
ber or pattern of clicks does not correspond to the ideal
case is discarded as an successful attempt and the calcu-
lation reveals the probability of a successful attempt for
each mode Ps0. Since we assume large-scale multiplexing
M (via frequency and spatial modes) on each element-
ary link, we then calculate the much higher probability
of at least one successful event Ps(1) � 1 � (1 � Ps0)M

at a particular elementary link before continuing. We
then calculate the propagation through the Bell meas-
urements at each repeater node. When N is a power of
two, one can take advantage of symmetry and explicitly
calculate a case where the Bell-state measurements are
done in a binary tree fashion, with the entanglement dis-
tance doubling at each stage. However, our calculation
and code are for general cases which do not contain a
number of elementary links corresponding to a power of
two (see for example Fig. 2). Again, the probability of
a successful click pattern is calculated and unsuccessful
patterns can be discarded. For any successful click pat-
tern, the density matrix can then be used to calculate the
total error Q of mis-matched bit values measured at Alice
and Bob. The obtainable rate of secret key generation
is related to this error rate via R(Q) � 1 � h2(Q) where
h2(x) = �x logx(x)� (1�x) log2(1�x) is the binary en-
tropy function. This rate is non-zero when Q  0.1104.
Note that in [16] we performed this same calculation ana-
lytically for the case of perfect entangled photon pair
sources and also numerically for the more general source
case.

In Figure 3, we present a comparison of the SPDC
sources with PNR detectors and perfect sources (i.e.,
sources with no multi-photon terms). We find that in
order for the SPDC-PNR architecture to have a perform-
ance comparable to perfect sources, one needs a high
level of multiplexing. The number of frequency modes
used for perfect sources was 1000, while for the SPDC-
PNR architecture we used 107 (dot-dashed lines) and 108

(dashed lines). The multiplexing needed for the SPDC-
PNR architecture can be intuitively predicted by noting
that in the SPDC source, one obtains the correct state,
i.e., the one with a single pair of photons, with probabil-
ity 1/N2

s . Therefore, the level of multiplexing needed for
SPDC sources to perform comparable to perfect sources
should be about M/N2

s , where M is the number of fre-

quency modes used for the perfect sources. With this
high level of multiplexing, one can obtain an envelope
(over di↵erent numbers of repeaters) that is comparable
to the envelope obtained from perfect sources. If one
wants to improve over repeaterless QKD instead, then
a more modest level of multiplexing would su�ce. This
figure shows that by merely increasing the number of
frequency modes, one can obtain a performance that im-
proves over repeater based QKD with perfect entangle-
ment sources. From a practical point of view, this is ex-
tremely interesting since improving the level of frequency
multiplexing is easier than producing deterministic en-
tanglement sources.

Figure 3. Comparison of the performance of SPDC source
(dashed lines) for Ns = 0.01, 0.02, . . . 0.1 and perfect sources
(solid lines) with PNR detectors. The number of frequency
modes used in the SPDC sources is 103/N2

s and for perfect
sources is 1000. The three di↵erent colors (red, black and
magenta) are 1, 2 and 4 elementary links. The three green
lines correspond to repeaterless E91 rates with 103, 105 and
107 frequency modes.

Modeling of sources: The state can be written as
follows.

| i =
p

p(0) |00, 00i +
p

p(1)/2 (|10, 01i + |01, 10i

+
p

p(2)/3 (|20, 02i � |11, 11i + |02, 20i) . (4)

Here we assume that the amplitudes are p(0) = 1/(Ns +
1), p(1) = Ns/(Ns + 1)2 and p(2) = 1 � Ns/(Ns +
1)2 � 1/(Ns + 1). We compare the performance of this
source with a perfect source, i.e., sources that produce an
entangled pair deterministically with no higher photon
terms. The output of a perfect source is the maximally
entangled state

| i =
1p
2
(|10, 01i + |01, 10i) . (5)
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IV. IMPLEMENTATION

A. Photon-number resolving Detectors

Highly e�cient (up to 95%) photon number resolv-
ing detectors have already been demonstrated (supercon-
ducting transition edge sensors) [20] and intrinsic dark
counts in these detectors are extremely low. Dark counts
are dominated by background light and with appropriate
filtering rates as low as 1 Hz should be achievable [21].

B. Multi-mode Memories

Frequency multiplexed quantum memories can be real-
ized based on rare-earth doped crystals. Optical trans-
itions in these systems can have very large ratios of in-
homogeneous (100s of GHz) to homogeneous linewidths
(kHz), making a great number of frequency channels
available (potentially millions) [10]. The proposed re-
peater architecture does not require readout on demand
in time, i.e. it requires only a low-loss delay, followed by
appropriate frequency shifts. Such a delay can be real-
ized based on the atomic frequency comb (AFC) memory

protocol [11]. For a delay one needs no control pulses, no
additional ground state level. One very promising mater-
ial is Tm:YGG [22]. Storage time of order 1 ms should be
possible. (This determines the possible elementary link
length.) Memory e�ciency can be made very high by
using (low-finesse) cavities [23].

V. CONCLUSIONS AND OUTLOOK

In this paper, we argued that SPDC sources along
with PNR detectors are a viable alternative to determin-
istic entanglement sources for repeater based QKD. We
showed, numerically, that the performance of the SPDC-
PNR architecture is comparable to that of perfect sources
when one increases the level of frequency multiplexing.
In order to demonstrate an improvement over reapeat-
erless QKD, one can use a smaller number frequency
modes. We have presented a combinatorial argument to
show that perfect PNR detectors at the repeater stations
and Alice and Bob’s ends can completely eliminate the
multi-pair errors. We would like to also emphasize the
modularity of this architecture. Since the architecture
can in principle be used for any sources, if better sources
become available, we need not modify anything else in
the architecture.
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