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Abstract—Randomness extractors are an important building
block for classical and quantum cryptography. However, for
many applications it is crucial that the extractors are quantum-
proof, i.e., that they work even in the presence of quantum
adversaries. In general, quantum-proof extractors are poorly
understood and we would like to argue that in the same way
as Bell inequalities (multi prover games) and communication
complexity, the setting of randomness extractors provides a
operationally useful framework for studying the power and
limitations of a quantum memory compared to a classical one.
We start by recalling how to phrase the extractor property as a
quadratic program with linear constraints. We then construct a
semidefinite programming (SDP) relaxation for this program that
is tight for some extractor constructions. Moreover, we show that
this SDP relaxation is even sufficient to certify quantum-proof
extractors. This gives a unifying approach to understand the
stability properties of extractors against quantum adversaries.
We analyze the limitations of this SDP relaxation and propose
a converging hierarchy of SDPs that gives increasingly tight
characterizations of quantum-proof extractors.

Finally, we discuss more generally how to quantize quadratic
optimization programs with linear constraints and develop a
converging semidefinite programming hierarchy. We consider two
examples other than randomness extractors. For the quadratic
program corresponding to the winning probability in a two-
prover game (also known as a Bell inequality), our quantization
captures the entangled value of the game. If instead the quadratic
program is a maximization of the success probability over encod-
ing strategies for a given channel, the quantization corresponds
to optimizing over entanglement assisted encoding strategies.

Randomness extractors— A randomness extractor is a
procedure to distill from a weakly random system as much
(almost) uniform random bits as possible. Such objects are
essential in many cryptographic protocols, in particular in
quantum key distribution and device independent randomness
expansion [2], [10], [24], [27], [36]. In this context, the
process of transforming a partly private string into one that is
almost uniformly random from the adversary’s point of view
is called privacy amplification [3], [4]. Even though we take
a cryptographic point of view in this submission, we should
mention that randomness extractors are very useful combina-
torial objects in particular in the study of the computational
power of randomness (see [35] for a survey). More precisely,
a randomness extractor is described by a family of functions
Ext = {f

s

}
s2D

where f
s

: N ! M . We use N = 2

n

to denote the input system (consisting of strings of n bits),
M = 2

m (bit-strings of length m) to denote the output system,
and D = 2

d (d bits) to denote the seed system that labels the

functions f
s

. Note that in a slight abuse of notation, we use
the same letter for the actual set of inputs/outputs as well as
its size. We say that Ext is a (k, ✏)-extractor if for any random
variable X taking values in N ,

Hmin(X) := � log pguess(X) � k

=) f
UD (X) is ✏-close to U

M

, (1)

where U
D

is uniformly distributed on D and independent
of X and U

M

denotes the uniform distribution over M .
As mentioned in the equation, the min-entropy Hmin(X) is
defined by the maximum probability of success in guessing a
source X with only the knowledge of the distribution p of X .
In this case, we simply have Hmin(X) = � logmax p(x). To
quantify the distance between distributions, we use the total
variation distance.1 Equation (1) can thus be more explicitly
written as

8x 2 N, p(x)  2

�k

=) 1

D

X

s2D

y2M

�������

X

x:y=
fs(x)

p(x)� 1

M

�������
 ✏ .

(2)

Even though the concept was already present in [3], [4], the
definition of randomness extractors was formulated in [23].
The typical example of a family {f

s

}
s

of functions that satisfy
this condition are randomly chosen functions. In fact, one can
show [26], [30] that choosing D functions f

s

independently
at random among all the functions from N to M satisfies
equation (2) with the following parameters

m = k � 2 log(1/✏)�O(1) and (3)
d = log(n� k) + 2 log(1/✏) +O(1) . (4)

We even know that these parameters cannot be improved
except for additive constants [26]. Probabilistic constructions
are interesting, but for applications we usually want the
functions f

s

to be efficiently computable. The most famous
example of an explicit extractor is given by two-universal
hash functions [3], [4], [15]. However, this construction has
a seed size d of the order of n, very far from the log n
achieved by probabilistic constructions (4). Constructing ef-
ficiently computable extractors that match the parameters of

1It is more convenient here to use simply the `1-norm between the
distributions, ignoring the 1

2 factor in the usual definition of the total variation
distance.



randomly chosen functions has been the subject of a large body
of research. Starting with the work of Nisan and Ta-Shma [22]
and followed by Trevisan’s breakthrough result [34], there has
been a lot of progress in achieving polylogarithmic seed size,
and there are now many intricate constructions that come close
to the parameters in (3) (see the review articles [29], [35]).

Quantum-proof randomness extractors— For applications
in classical and quantum cryptography (see, e.g., [19], [27])
and for constructing device independent randomness amplifi-
cation and expansion schemes (see, e.g., [9], [11], [21]) it is
important to find out if extractor constructions also work when
the input source is correlated to another (possibly quantum)
system Q. That is, we would like that for all classical-quantum
input density matrices ⇢

QN

=

P
x2N

⇢(x)⌦ |xihx| acting on
QN with conditional min-entropy

Hmin(N |Q)

⇢

:= � log pguess(N |Q)

⇢

� k , (5)

where pguess(N |Q) denotes the maximal probability of guess-
ing the system N given Q, the output is uniform and inde-
pendent of Q,2

1
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y2M
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x:y=
fs(x)

⇢(x)� 1

M

X

x2N

⇢(x)

�������
1

 ✏ . (6)

As observed in [18, Proposition 1], if we restrict the system Q
to be classical with respect to some basis {|ei}

e2Q

then every
(k, ✏)-extractor as in (2) is also a

�
k+ log(1/✏), 2✏

�
-extractor

in the sense of (6). That is, even when the input source is
correlated to a classical system Q, every extractor construction
still works (nearly) equally well for extracting randomness.
However, if Q is quantum no such generic reduction is
known and extractor constructions that also work for quantum
Q are called quantum-proof.3 Examples of (approximately)
quantum-proof extractors include:

• Spectral (k, ✏)-extractors are quantum-proof (k, 2
p
✏)-

extractors [8, Theorem 4]. This includes in particular
two-universal hashing [27], [33], two-wise independent
permutations [31], as well as sample and hash based
constructions [17].

• One-bit output (k, ✏)-extractors are quantum-proof (k +

log(1/✏), 3
p
✏)-extractors [18, Theorem 1].

• (k, ✏)-extractors constructed along Trevisan [34] are
quantum-proof

�
k + log(1/✏), 3

p
✏
�
-extractors [13, The-

orem 4.6] (see also [1]).
We emphasize that all these stability results are specifically
tailored proofs that make use of the structure of the particular
extractor constructions. In contrast to these findings it was
shown by Gavinsky et al. [14, Theorem 1] that there exists
a valid (though contrived) extractor for which the decrease

2Other notions for weaker quantum adversaries have also been discussed
in the literature, e.g., in the bounded storage model (see [13, Section 1] for
a detailed overview).

3Note that the dimension of Q is unbounded and that it is a priori unclear
if there exist any extractor constructions that are quantum-proof (even with
arbitrarily worse parameters).

in the quality of the output randomness has to be at least
✏ 7! ⌦(m✏).4 As put forward by Ta-Shma [32, Slide 84], this
then raises the question if the separation found by Gavinsky
et al. is maximal, that is: is every (k, ✏)-extractor a quantum-
proof

�
O(k + log(1/✏)), O(m

p
✏)
�
-extractor or does there

exists an extractor that is not quantum-proof with a large
separation, say ✏ 7! (2

m✏)⌦(1)? We note that such a stability
result would make every extractor with reasonable param-
eters (approximately) quantum-proof. However, for reasons
discussed later it is unclear if such a generic quantum-proof
reduction is possible and small sets of randomly chosen
functions are interesting candidates to study this possibly large
classical/quantum separation.

Our results about extractors— (technical details can be
found in [6]):

• We write the extractor condition (2) as a quadratic op-
timization program. The optimal value for this program
denoted as C(Ext, k) is the smallest error ✏ such that
Ext is a (k, ✏)-extractor. We then construct a semidefinite
programming (SDP) relaxation for this program whose
optimal value is denoted SDP(Ext, k). This program
gives an efficiently computable procedure to certify that
a family of functions Ext is a (k, ✏)-extractor for ✏ =

SDP(Ext, k).
• We show that this certification procedure gives us much

more: it certifies that Ext is a quantum-proof (k,
p
2✏)-

extractor. Thus, we give a general efficient method for
proving that an extractor is quantum-proof. This tech-
nique can recover in a unified way many of the currently
known methods for constructing quantum-proof extrac-
tors. In particular, we can show that constructions based
on two-universal hashing [28], [33] are quantum-proof,
and that any extractor with entropy deficit n � k or
output size m small is quantum-proof [5] (for m = 1

this was known before [18]). This latter result is a basic
building block for showing that Trevisan based extractors
are quantum-proof [13], and the extension from m = 1

to general small m could lead to more efficient imple-
mentations of short seed quantum-proof extractors [20].

• We consider the limitations of this SDP relaxation. Even
though SDP(Ext, k) is a tight bound on C(Ext, k) for
many extractor constructions, there can be a large gap
between these two values. In particular, if Extrand is given
by a small number of randomly chosen functions, then
C(Extrand, k) ⌧ SDP(Extrand, k). This shows that the
method we propose cannot be used to prove that a small
set of randomly chosen functions define good extractors.
This means that other techniques would be needed to
determine whether Extrand is a quantum-proof extractor
or not. To go in this direction, we propose a hierarchy
of SDPs that gives increasingly tight characterizations of
the quantum-proof extractor condition (6) at the cost of

4Since the quality of the output randomness of Gavinsky et al.’s construc-
tion is bad to start with, the decrease ✏ 7! ⌦(m✏) for quantum Q already
makes the extractor fail completely in this case.



increasing dimension.
Quadratic programs and their non-commutative versions—

(technical details will be publicly available soon [7]). Our
methods are not restricted to study randomness extractors but
also allow to analyze general quadratic optimization programs
with linear constraints. That is, for A

ij

a real-valued symmet-
ric matrix, i, j 2 {1, . . . N}, we want to optimize expressions
of the form

P
ij

A
ij

x
i

x
j

such that the variables x
i

2 R satisfy
linear constraints g

k

2 R[x1, . . . , xN

]:

p[A,G] := max

������

X

ij

A
ij

x
i

x
j

������
(7)

subject to G := {g1, g2, . . . } . (8)

As discussed above the extractor condition (2) is exactly of
this form, but more generally quadratic optimization problems
appear frequently in graph theory where we might think of A

ij

as the adjacency matrix of a graph and indexes i, j labeling
vertices.5 Another class of problems of the form (7)-(8) are
the classical value of two-prover games (also known as a Bell
inequalities). As an interesting special case we would like to
mention classical channel coding with fixed message length.
Here we want to send k possible classical messages over a
classical channel p(y|x) and maximize the average success
probability:

psuccess := max
1

k

X

i,x,y

e(i, x)p(y|x)d(y, i) (9)

subject to e(i, x) � 0 8i,
X

x

e(i, x) = 1 (10)

d(y, i) � 0 8i,
X

i

d(y, i) = 1 , (11)

where e(i, x) and d(y, i) correspond to the encoder and de-
coder, respectively. In this case, we have the matrix A

xi,yi

0
=

p(y|x)�
ii

0/k.
Now our general aim is to take the quadratic optimiza-

tion program (7)-(8) and to quantize it by allowing for
non-commuting variables. That is, the variables X1, . . . , XN

are allowed to be arbitrary free variables, with no com-
mutation relation to be assumed. We define A(N)

X

=

A{X1, . . . , XN

} to be the free complex algebra generated
by the set {X1, . . . , XN

}, and its elements are expressed as
complex linear combination of products of arbitrary length.
The algebra A

X

caries a natural involution ⇤ : A
X

! A
X

,
obtained by reversing the order and complex conjugation of the
linear coefficients. Furthermore, we introduce a partial order
on the free algebra by saying that A 2 A

X

� 0 if there
exists an element B 2 A

X

with A = B⇤B. Now, in order to
arrive at a meaningful expression to optimize, the product of
two positive numbers is replaced by a general bilinear form
mapping elements of the free algebras to the complex numbers,

5Examples of this form include densest subgraph problems, vertex ex-
panders, randomness condensers, etc. [7].

! : A
X

⇥A
X

! C. We find that the non-commutative version
of the optimization problem (7)-(8) can be written as (cf. [25])

pNC

[A,G] = max

������

X

ij

A
ij

!(X
i

, X
j

)

������
(12)

subject to ! : A
X

⇥A
X

! C , (13)
! self-polar and normalized (14)
! is linear constrained by g

k

2 G (15)
9C : C1I � X

i

� �C1I , (16)

where self-polar is defined in [7], and we have to assume for
technical reasons the existence of some constant C > 0 as
in (16). Starting from (12)-(16) and inspired by Navascues et
al. [25] we then develop a converging semidefinite program-
ming hierarchy

pNC

[A,G] = SDP1[A]  . . .  SDP2[A]  SDP1[A] .
(17)

For randomness extractors we take the quadratic optimization
p[A,G] = C(Ext, k) and find that the corresponding non-
commutative quadratic optimization pNC

[A,G] =: Q(Ext, k)
exactly quantifies quantum-proof extractors as defined in (6).
Moreover, the first level of the hierarchy recovers the semidef-
inite programming (SDP) relaxation as mentioned above:
SDP1[A] = SDP(Ext, k). We emphasize that these results do
not follow from [25] since the definition of self-polar forms
as used in (14) gives a potentially tighter hierarchy as the
one studied by Navascues et al. (and this was important for
the properties we showed about quantum-proof extractors).
For two-prover games (Bell inequalities) with classical value
p[A,G] the non-commutative optimization pNC

[A,G] becomes
the corresponding quantum value. In particular, for the channel
coding example as in (9)-(11) we find that pNC

[A,G] =

pEsuccess, the entanglement-assisted success probability. Interest-
ingly, there exist channels with pEsuccess > psuccess [12]. It would
be interesting to explore this gap more systematically [16].
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I. PRELIMINARIES

A. Quantum information

In quantum theory, a system is described by an inner-product space, that we denote here by letters like N,M,Q.1

Note that we use the same symbol Q to label the system, the corresponding inner-product space and also the dimension
of the space. Let MatQ(S) be the vector space of Q ⇥ Q matrices with entries in S. Whenever S is not specified,
it is assumed to be the set of complex numbers C, i.e., we write MatQ(C) =: MatQ. The state of a system is
defined by a positive semidefinite operator ⇢Q with trace 1 acting on Q. The set of states on system Q is denoted
by S(Q) ⇢ MatQ(C). The inner-product space of a composite system QN is given by the tensor product of the
inner-product spaces Q⌦N =: QN . From a joint state ⇢QN 2 S(QN), we can obtain marginals on the system Q by
performing a partial trace of the N system ⇢Q := TrN [⇢QN ]. The state ⇢QN of a system QN is called quantum-classical
(with respect to some basis) if it can be written as ⇢QN =

P
x ⇢(x)⌦ |xihx| for some basis {|xi} of N and some positive

semidefinite operators ⇢(x) acting on Q with
P

x Tr[⇢(x)] = 1. We denote the maximally mixed state on system N by
�N .

To measure the distance between two states, we use the trace norm kAk
1

:= Tr[
p
A⇤A], where A⇤ is the conjugate

transpose of A. In the special case when A is diagonal, kAk
1

becomes the familiar `
1

norm of the diagonal entries.
Moreover, the Hilbert-Schmidt norm is defined as kAk

2

:=
p
Tr[A⇤A], and when A is diagonal this becomes the usual

`
2

norm. Another important norm we use is the operator norm, or the largest singular value of A, denoted by kAk1.
When A is diagonal, this corresponds to the familiar `1 norm of the diagonal entries. For a probability distribution
PN on the set N , kPNk`1 corresponds to the optimal probability with which PN can be guessed successfully. We write

H
min

(N)P := � log kPNk`1 , (1)

the min-entropy of PN . More generally, the conditional min-entropy of N given Q is used to quantify the uncertainty
in the system N given the system Q. The conditional min-entropy is defined as

H
min

(N |Q)⇢ := � log min
�
Q

2S(Q)

��( N ⌦ ��1/2
Q )⇢NQ( N ⌦ ��1/2

Q )
��
1 , (2)

with generalized inverses. Note that in the special case where the system Q is trivial, we have H
min

(N)⇢ = � log k⇢Nk1.

B. Semidefinite programming

Semidefinite programs (SDP) are a large class of optimization problems that can be e�ciently solved. Even if one is
not explicitly interested in solving it numerically, a semidefinite program often has appealing properties such as strong
duality. Semidefinite programming has been extensively used in various contexts in quantum information.

We use a formulation of semidefinite programs sometimes called vector programs. For some fixed values ↵x,x0 ,�x,x0,k

and �k, the optimization program can be written as follows:

1
In the following all spaces are assumed to be finite-dimensional.



2

maximize
X

x,x0

↵x,x0~ax · ~ax0 (3)

subject to
X

x,x0

�x,x0,k~ax · ~ax0  �k for all k (4)

Here the optimization is over all vector ~ax (of arbitrary finite dimension) that satisfy the constraints stated above.
Note that we can always assume that the dimension of the vectors ~ax is bounded by the number of vectors, i.e., the
size of the set x runs over.

II. QUADRATIC PROGRAMS FOR RANDOMNESS EXTRACTORS

It is useful to see the definition of extractors using the following optimization program:

Error for extractor Ext = {fs}

C(Ext, k) := maximize
1

D

X

s,y

X

x

✓
�f

s

(x)=y � 1

M

◆
p(x)�s,y (5)

subject to 0  p(x)  2�k (6)
X

x

p(x) = 1 (7)

� 1  �s,y  1 (8)

Definition II.1. Ext is a (k, ")-extractor if and only if C(Ext, k)  ".

To relate this to the definition given in the introduction, it su�ces to observe that the optimal choice for �s,y is the
sign of

P
x

�
�f

s

(x)=y � 1

M

�
p(x) so the objective function becomes 1

D

P
s,y

��P
x

�
�f

s

(x)=y � 1

M

�
p(x)

��. The conditions (6)
and (7) ensure that the input distribution has min-entropy at least k.
To simplify the program (5) we note that this function is convex in the distribution p and so the maximum is

attained in the extreme points of the feasible region. These are simply the distributions that are uniform over a set of
size at least 2k. So we can equivalently write

C(Ext, k) = max

(
X

s,y

�����
1

KD

X

x2L

�f
s

(x)=y � 1

MD

����� : L ✓ N,L � 2k
)

, (9)

where again in a slight abuse of notation, we use the letter L for the actual set as well as its size. As the expression
being maximized is the `

1

norm between two probability distributions, we can write it as:

C(Ext, k) = 2 ·max

8
<

:
1

KD

X

x2L,(y,s)2R

�f
s

(x)=y � R

MD
: L ✓ N,L � 2k, R ✓ M ⇥D

9
=

; . (10)

This allows us to interpret C(Ext, k) in graph-theoretic terms. For that we introduce a bipartite graph with left vertex
set N and right vertex set M ⇥D, and there is an edge between vertices x and (y, s) if and only if fs(x) = y. By
writing E(L,R) for the set of edges with one endpoint in L and the other endpoint in R, this expression is simply

C(Ext, k) = 2 ·max

⇢
E(L,R)

2kD
� R

MD
: L ✓ N,L � 2k, R ✓ M ⇥D

�
. (11)

Written in this way, we see that the optimization in C(Ext, k) is a kind of bipartite densest subgraph problem.
Algorithms for a slightly di↵erent problem known as the densest K-subgraph problem have been extensively studied,
see e.g., [6, 12]. The best known approximation algorithms for this problem achieve a factor of N↵ for some constant
↵, but even ruling out constant factor approximations is only known using quite strong assumptions [1].

We can similarly write a program for the error of Ext against potentially quantum adversaries:
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Error for extractor Ext = {fs} against quantum adversaries

Q(Ext, k) := maximize
1

D

X

s,y

X

x

✓
�f

s

(x)=y � 1

M

◆
Tr [⇢(x)Bs,y] (12)

subject to 0  ⇢(x)  2�k� (13)
X

x

Tr[⇢(x)] = 1 (14)

Tr[�] = 1 (15)

kBs,yk1  1 (16)

Here the maximization is understood over all ⇢(x) of arbitrary dimension. Unlike for SDPs for which one can give an
upper bound on the dimension of the vector of an optimal solution, no such bound is know in this setting. In fact, we
do not even know if the quantity Q is computable.

Definition II.2. Ext is a quantum-proof (k, ")-extractor if and only if Q(Ext, k)  ".

To see that this definition coincides with the definition given in the introduction, observe that for fixed ⇢(x), the
maximum over Bs,y of the quantity

P
x

�
�f

s

(x)=y � 1

M

�
Tr [⇢(x)Bs,y] is k

P
x

�
�f

s

(x)=y � 1

M

�
⇢(x)k

1

. The constraints
on ⇢(x) and � ensure that the state

P
x ⇢(x)⌦ |xihx| has conditional min-entropy at least k.

III. SEMIDEFINITE RELAXATIONS FOR RANDOMNESS EXTRACTORS

A. A relaxation for the extractor condition

Motivated by the fact that the two quantities C(Ext, k) and Q(Ext, k) are generally di�cult to understand, we
introduce a SDP that, as we show later, provides a relaxation for both of these quantities. For Ext = {fs}s2D and
fixed k, we define:

SDP relaxation for error of Ext = {fs}

SDP(Ext, k) := maximize
1

D

X

s,y,x

✓
�f

s

(x)=y � 1

M

◆
~ax ·~bs,y (17)

subject to 0  ~ax · ~ax0  2�k · q(x) (18)

q(x)  2�k (19)
X

x

q(x) = 1 (20)

X

x,x0

~ax · ~ax0  1 (21)

kbs,yk2  1 (22)

We maximize over all possible dimensions of the vectors ~ax and ~bx. Moreover, the Cauchy-Schwarz inequality implies
that the optimal choice for ~bs,y is

P
x

�
�f

s

(x)=y � 1

M

�
~ax

kPx

�
�f

s

(x)=y � 1

M

�
~axk2

, (23)

and thus the objective function of the SDP relaxation becomes

1

D

X

s,y

�����
X

x

✓
�f

s

(x)=y � 1

M

◆
~ax

�����
2

, (24)

subject to the constraints on the vectors ~ax stated in (17). By simply plugging ~ax = p(x), q(x) = p(x) and ~bs,y = �s,y,
we see that this SDP gives an upper bound on the extractor program (5).



4

Proposition III.1. For any Ext and k, C(Ext, k)  SDP(Ext, k). In other words, if SDP(Ext, k)  ", then Ext is a

(k, ")-extractor.

This gives a computationally e�cient criterion for certifying that an extractor is good. As we show in Section III C,
this method can certify that many important constructions are good extractors. However, this technique does in
general not give a tight characterization of extractors and there can be a large gap between the values C(Ext, k) and
SDP(Ext, k) as we will see in Section IIID.

B. A relaxation for the error against quantum adversaries

A very interesting property about the SDP (17) is that it also gives an upper bound on the error of an extractor
against quantum adversaries. This means that if an extractor satisfies the stronger property SDP(Ext, k)  " then it
is not only a (k, ")-extractor but also a quantum proof (k,

p
2")-extractor.

Theorem III.2. For any Ext and k, we have

C(Ext, k)  Q(Ext, k) 
p
2 · SDP(Ext, k) . (25)

Proof. Let ⇢ =
P

x ⇢(x)⌦ |xihx| be a quantum state on QN with H
min

(N |Q)⇢ � k. By the definition of the conditional
min-entropy, this implies that there exists � 2 S(Q) such that ⇢(x)  2�k� for all x 2 N . We now define the average
state ⇢̄ =

P
x ⇢(x) and ! = ⇢̄+�

2

, as well as the vectors ~ax as the list of entries of the matrix 1p
2

!�1/4⇢(x)!�1/4.

This is so that we have ~ax · ~ax0 = 1

2

Tr[!�1/2⇢(x)!�1/2⇢(x0)]. As the trace of the product of two positive semidefinite
operators is nonnegative, we have ~ax · ~ax0 � 0. Moreover, we have

~ax · ~ax0 =
1

2
Tr[!�1/2⇢(x)!�1/2⇢(x0)]  1

2
Tr[!�1/2⇢(x)!�1/22�k�] (26)

 1

2
· 2�kTr[!�1/2⇢(x)!�1/22!]  2�kTr[⇢(x)] . (27)

We set q(x) = Tr[⇢(x)]. Note that we have q(x) = Tr[⇢(x)]  2�kTr[�] = 2�k and
P

x q(x)  1. We can also write

X

x,x0

~ax · ~ax0 =
1

2
Tr[!�1/2⇢̄!�1/2⇢̄]  1

2
Tr[!�1/2⇢̄!�1/22!]  1 . (28)

We now analyze the objective function. We use the following Hölder-type inequality for operators k↵��k
1


k|↵|4k1/4

1

k|�|2k1/2
1

k|�|4k1/4
1

, see e.g., [7, Corollary IV.2.6]. The error the extractor makes on input ⇢ is given by

1

D

X

s,y

�����
X

x

✓
�f

s

(x)=y � 1

M

◆
⇢(x)

�����
1

 1

D

X

s,y

k!k1/4
1

������

 
X

x

✓
�f

s

(x)=y � 1

M

◆
!�1/4⇢(x)!�1/4

!
2

������

1/2

1

k!k1/4
1

(29)

=
1

D

X

s,y

vuuutTr

2

4
X

x,x0

✓
�f

s

(x)=y � 1

M

◆✓
�f

s

(x0
)=y � 1

M

◆
!�1/2⇢(x)!�1/2⇢(x0)

3

5 (30)

=
1

D

X

s,y

vuut
X

x,x0

✓
�f

s

(x)=y � 1

M

◆✓
�f

s

(x0
)=y � 1

M

◆
2 · ~ax · ~ax0 (31)

=

p
2

D

X

s,y

�����
X

x

✓
�f

s

(x)=y � 1

M

◆
~ax

�����
2

. (32)

This proves that the error the extractor makes in the presence of quantum adversaries is upper bounded by
p
2 ·

SDP(Ext, k).
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C. Applications

We now give several applications of the SDP relaxation. We show that many results about quantum-proof extractors
can be shown with the SDP quantity. First, let us consider general results that do not use the structure of the functions
in Ext but simply the extractor’s parameters. We know the advantage obtained by a quantum adversary compared to
a classical one can by bounded by a function of the number of output bits m or the min-entropy deficit n� k [3] (for
m = 1 this was first shown in [15]). In particular, if m or n� k are small, then the quantum advantage cannot be
large. We show that this is actually a property of the SDP.

Theorem III.3. For any Ext and k, we have for any " > 0,

SDP
�
Ext, k + log(1/")

� 
p
2m

p
C(Ext, k) + " (33)

SDP(Ext, k)  3KG2
n�kC(Ext, k � 1) , (34)

where KG  1.8 is Grothendieck’s constant.

Proof. As Ext is usually clear from the context, we use C(k) and SDP(k) for C(Ext, k) and SDP(Ext, k). To prove
(33), we consider an optimal solution for SDP(k + log(1/")). Define p(x, x0) = ~ax · ~ax0 , with p̄(x) =

P
x0 p(x, x0). Now

consider the set S" = {x 2 N : p̄(x)  "q(x)}. Then
P

x2S
"

p̄(x)  "
P

x2S
"

q(x)  ". Using the fact that ~ax define

a feasible solution for SDP(k + log(1/")), we have for x /2 S", p(x, x0)  2�(k+log(1/"))q(x)  2�kp̄(x). We can then
write using the Cauchy Schwarz inequality,

1

D

X

s,y

�����
X

x

�
�f

s

(x)=y � 2�m
�
~ax

�����
2


vuut 1

D

X

s,y

�����
X

x

�
�f

s

(x)=y � 2�m
�
~ax

�����

2

2

p
2m . (35)

We now look at the expression 1

D

P
s,y

��P
x

�
�f

s

(x)=y � 2�m
�
~ax

��2
2

which equals

1

D

X

s,y

X

x,x0

�
�f

s

(x)=y � 2�m
� · ��f

s

(x0
)=y � 2�m

�
p(x, x0) (36)

 1

D

X

s,y

X

x

�����
X

x0

�
�f

s

(x)=y � 2�m
� · ��f

s

(x0
)=y � 2�m

�
p(x, x0)

����� (37)

 1

D

X

s,y

X

x

�����
X

x0

�
�f

s

(x0
)=y � 2�m

�
p(x, x0)

����� . (38)

We separate the sum into x 2 S" and x /2 S" and get

1

D

X

s,y

X

x

�����
X

x0

�
�f

s

(x0
)=y � 2�m

�
p(x, x0)

����� (39)

=
1

D

X

s,y

X

x

p̄(x)

�����
X

x0

�
�f

s

(x0
)=y � 2�m

� p(x, x0)

p̄(x)

����� (40)

=
X

x2S
"

p̄(x)
1

D

X

s,y

�����
X

x0

�
�f

s

(x0
)=y � 2�m

� p(x, x0)

p̄(x)

����� (41)

+
X

x/2S
"

p̄(x)
1

D

X

s,y

�����
X

x0

�
�f

s

(x0
)=y � 2�m

� p(x, x0)

p̄(x)

�����  "+C(k) , (42)

which proves (33).
We now prove the inequality (34). For that, we simply upper bound SDP(Ext, k) by forgetting several constraints

and then apply Grothendieck’s inequality (Theorem A.1). Observe first that for any feasible vectors ~ax for the SDP,
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we have k~axk2
2

 2�kq(x)  2�2k.

SDP(Ext, k)  max

(
1

D

X

s,y,x

�
�f

s

(x)=y � 2�m
�
~ax ·~bs,y : k~axk2  2�k, k~bs,yk2  1

)
(43)

 KG max

(
1

D

X

s,y,x

�
�f

s

(x)=y � 2�m
�
axbs,y : |ax|  2�k, |bs,y|  1

)
(44)

= KG max

(
1

D

X

s,y

�����
X

x

�
�f

s

(x)=y � 2�m
�
ax

����� : |ax|  2�k

)
. (45)

We partition the set of x 2 N into {x : ax � 0} and {x : ax < 0} and write
�����
X

x

�
�f

s

(x)=y � 2�m
�
ax

����� 
������

X

x:a
x

�0

�
�f

s

(x)=y � 2�m
�
ax

������
(46)

+

�����
X

x:a
x

<0

�
�f

s

(x)=y � 2�m
�
(�ax)

����� . (47)

Let us write ↵
+

:=
P

x:a
x

�0

ax. If ↵+

� 1, then we define p
+

(x) = max{a
x

,0}
↵+

. Observing that ↵
+

 2n�k, we have

1

D

X

s,y

������

X

x:a
x

�0

�
�f

s

(x)=y � 2�m
�
ax

������
= ↵

+

· 1

D

X

s,y

�����
X

x

�
�f

s

(x)=y � 2�m
�
p
+

(x)

����� (48)

 ↵
+

C(k + log(↵
+

))  2n�kC(k) , (49)

where we have used the abbreviation C(k) = C(Ext, k). Otherwise (if ↵
+

< 1), we define p
+

(x) = max{ax, 0}+ (1�
↵
+

)2�n. We get

1

D

X

s,y

������

X

x:a
x

�0

�
�f

s

(x)=y � 2�m
�
ax

������
(50)

=
1

D

X

s,y

�����
X

x

�
�f

s

(x)=y � 2�m
�
(p

+

(x)� (1� ↵
+

)2�n)

����� (51)

 1

D

X

s,y

�����
X

x

�
�f

s

(x)=y � 2�m
�
p
+

(x)

�����+ (1� ↵
+

)
1

D

X

s,y

�����
X

x

✓
�f

s

(x)=y � 1

M

◆
2�n

����� (52)

 C(k � 1) + (1� ↵
+

)C(n) . (53)

With a similar argument for the set {x : ax < 0}, we reach the bound

1

D

X

s,y

�����
X

x

�
�f

s

(x)=y � 2�m
�
ax

����� (54)

 max{2 · 2n�kC(k),C(k � 1) + C(n) (55)

+ 2n�kC(k), 2C(k � 1) + (1� ↵
+

� ↵�)C(n)}  3 · 2n�kC(k � 1) . (56)

Finally, we get SDP(k)  3KG2n�kC(k � 1).

Some specific constructions are also known to be quantum-proof, in particular constructions based on two-universal
hash functions [20–22]. This type of construction is captured by spectral extractors [5]. For an extractor Ext = {fs}s2D

we define the linear maps [Ext] and ⌧ that map vectors of dimension N to vectors of dimension DM as follows:

[Ext]

 
X

x

p(x)|xihx|N
!

=
1

D
·
X

s,y

X

x

�f
s

(x)=yp(x)|yihy|M ⌦ |sihs|D (57)

⌧

 
X

x

p(x)|xihx|N
!

=

 
X

x

p(x)

!
vM ⌦ vD . (58)
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Note that we used a quantum notation and identified vectors with diagonal matrices. A spectral (k, ")-extractor is
then defined via the largest eigenvalue bound

�
1

⇣
[Ext]⇤ · [Ext]� ⌧⇤ · ⌧

⌘
 2k�m�d" , (59)

where ⇤ refers to the adjoint of a linear map. We prove next that for spectral extractor, there can be at most a
quadratic gap between C(Ext, k) and SDP(Ext, k).

Theorem III.4. Let Ext
spec

= {fs}s2D be a spectral (k, ")-extractor as defined in (59). Then, we have

SDP(Ext
spec

, k)  p
" . (60)

The proof can be found in Appendix B. Another class of extractors that are quantum-proof are Trevisan based
constructions [2, 10]. These are particularly important to understand because they are the only known quantum-proof
constructions with short seed d = O(poly(log n)). Trevisan’s construction can be thought of as a composition of one-bit
output extractors cleverly interleaved by slightly reusing the seed. Specifically, the construction is based on a family of
subsets S

1

, . . . , Sm ⇢ {1, . . . , d} such that for each i we have

|Si| = l and
X

j<i

2|Si

\S
j

|  r(m� 1) , (61)

for some r > 0. Such a family {Si}i2{1,...,m} is also called weak (l, r)-design. Now, take a one-bit output extractor
Ext

one

= {gt}t2{0,1}l with gt : N ! {0, 1}, and a weak (l, r)-design as defined in (61). Trevisan then defines a m-bit
output extractor

Ext
Trev

= {fs}s2D with fs : N ! M (62)

fs(x) := gs|S1
(x) � gs|S1

(x) � · · · � gs|S
m

(x) , (63)

where s|Si denotes the l-bits of s that correspond to the position indexed by the set Si, and � means concatenation.2

The basic idea of the proof is to bound the quality of Ext
Trev

as a function of the quality of Ext
one

. Then (using
Theorem III.3) one can relate the quality of Ext

one

against quantum adversaries to its quality against classical
adversaries. We give (in the Appendix) a concise proof of this result using our notation in terms of the quantum
program (12).

Theorem III.5. Let {Si}i2{1,...,m} be a weak (l, r)-design as defined in (61), and Ext
one

= {gt}t2{0,1}l be a one-bit

output extractor. Then, we have for Trevisan’s extractor Ext
Trev

= {fs}s2D as defined in (62)–(63),

Q(Ext
Trev

, k)  m ·Q(Ext
one

, k � r(m� 1)) (64)

 2m ·
p
C(Ext

one

, k � r(m� 1)� log(1/")) + " , (65)

for any " > 0.

D. Gap between C and SDP

In this section, we show that there can be a large gap between the value C and SDP. In fact, we show that SDP
cannot be used to prove that randomly chosen functions are good randomness extractors. Random functions are good
extractors with essentially optimal parameters. In other words, for a family of functions Ext

rand

= {fs}s2D chosen at
random, we have with very high probability that

C(Ext
rand

, k)  " for m = k � 2 log(1/")�O(1) (66)

d = log(n� k) + 2 log(1/") +O(1) . (67)

In contrast to this, we find that the SDP relaxation for random constructions can become very large for su�ciently
small min-entropy k.

2
Actual parameters for Trevisan based extractor constructions are, e.g, discussed in detail in [10, Section 5].
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Theorem III.6. Let Ext = {fs}s2D be a family of functions such that

�
1

DN2

M


X

x,x0,s

�f
s

(x)=f
s

(x0
)

 �
2

DN2

M
, (68)

and k  log
�
�
1

N
M

�
. Then, we have

SDP(Ext, k) � 1

2

s
M

�
2

D
. (69)

When the functions fs are chosen at random, then the condition (68) is satisfied with very high probability
for constant values of �

1

and �
2

(see Proposition B.1 for a proof). Hence, we find that for instance if k = n/2,
m = n/4 and d = O(log n), with high probability SDP(Ext

rand

, k) � 2, whereas we have with very high probability
C(Ext

rand

, k)  1

n . As clearly Q(Ext, k)  2, this also shows that Q can be much smaller than SDP.
Moreover we can show that for Trevisan’s extractor, we cannot replace Q(Ext

Trev

) with SDP(Ext
Trev

, k) in general
in Theorem III.5. This is because if the one-bit extractors {gt} in Trevisan’s construction are chosen at random, then
it is possible to show that the condition (68) is satisfied with high probability for constant values of �

1

and �
2

(see
Proposition B.1 for a proof).

Proof of Theorem III.6. Use ~ax = ↵�1/2 · Ps,y �fs(x)=y|si|yi, ↵ =
P

x,x0
P

s,y �fs(x)=y�f
s

(x0
)=y. By definition the

normalization condition
P

x,x0 ~ax · ~ax0  1 is satisfied. Moreover, for any fixed x, x0, we have

~ax · ~ax0 =
1

↵

X

s,y

�f
s

(x)=y�f
s

(x0
)=y  D

↵
 1

�
1

M

N2

 1

�
1

M

N
q(x) , (70)

where we used the lower bound on �
1

and we choose q(x) = 1/N . Now if k  log
�
�
1

N
M

�
, the min-entropy condition

for the vectors is satisfied. Now let us analyze the objective function by choosing ~bs,y = |si|yi. We find

1

D

X

s,y

X

x

✓
�f

s

(x)=y � 1

M

◆
~ax ·~bs,y =

1

D

X

s,y

X

x

✓
�f

s

(x)=y � 1

M

◆
↵�1/2�f

s

(x)=y (71)

=
1

D↵1/2

X

s,x

✓
1� 1

M

◆
=

N

↵1/2

✓
1� 1

M

◆
� 1

2

s
M

�
2

D
, (72)

which proves the claim.

IV. HIERARCHY OF SDPS FOR Q

Given the SDP relaxation for extractors against quantum adversaries (Theorem III.2), it is natural to ask whether
we can add positive definite conditions such that the upper bound improves or even becomes equal to the it. Note that
a similar question has been studied in the case of two-player games, also called bipartite Bell inequalities in the physics
literature (see the review article [8]). Here, the task to bound the entangled value of the game. Again, this value can
be upper bounded in terms of an SDP, and the goal is to add more and more constraints to ensure a better and better
upper bound (see [11, 17] for two complementary approaches in this direction). It turns out that similar thing can be
done for extractors and that even a unified discussion is possible. We refer to the full version in preparation [4] for
further details and only say a few words and state the levels of the SDP hierarchy (in order motivate further studies in
this direction).

Our approach is motivated from the construction of Lasserre’s Sum-of-Squares hierarchies for constrained optimization
problems [16]. Given the extractor program (5), which is itself of such a form, this is not surprising. Assuming that
the constraints single out a closed convex set, the underlying idea is to construct a positive measure supported on
this set while simultaneously maximizing the expectation value of the objective function with respect to this measure.
Since the objective value is thus linear in the measure, the optimum is attained at a point measure defining the
optimal solution. In order to construct such measures, we have to define its moments, i.e., expectation values of
monomials. It is convenient to arrange them into matrix form, and this matrix (indexed by monomials) then has to
be positive semidefinite. Thus the task is reduced to constructing positive semidefinite matrices, further satisfying
constraints imposed by the structure of the convex set - which again can be phrased as positive semidefinite constraints.
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A fixed level n is then defined by only considering the constraints originating from monomials of power at most n.
The idea for the quantum-proof extractor program (12) that we want to upper bound is quite similar, but rather
than considering commuting variables, the “measure” now has to define a functional on non-commuting operators
- or more precisely a state on an operator algebra. The general idea is very alike the non-commutative polynomial
optimization techniques by Navascues [19], however for extractors a few more constraints have to be added (again, we
refer to the full version for details). In comparison to the classical case, though, these matrices are now indexed by
non-commuting monomials, or equivalently, by elements of the free algebra spanned by the variables in the objective
function. Expressing a feasible matrix of the nth-level of the hierarchy as a Gram matrix then leads to vectors cw
indexed by “words” w = (i

1

, i
2

, . . . , in) - strings of indices corresponding to variables given by the input x and output
ỹ := (s, y) of length at most n. We denote the set of such words by Sn. To simplify notation, it is useful to introduce
for a fixed pair of indices (i, j) the matrices

C[(i), (j)] :=
X

r,s,k,l2S
n

~cr⇤�(i)�s · ~ck⇤�(j)�l |rihs|⌦ |kihl| , (73)

where (i, j) label the variables, i.e., (i) and (j) are words of length one. Here, we abbreviated the operations
corresponding to reversing the order of words, r⇤ := (r

1

, . . . , rp)⇤ = (rp, . . . , r1) as well as to concatenation, r � s :=
(r

1

, . . . , rp, s1, . . . , sq). We also allow the indices to take the value ;, which we interpret as “no variable” and thus
define r � ; := r. For n even, the program then reads as follows:

nth-level SDP relaxation for error of Ext = {fs}

SDPn(Ext, k) := maximize
1

D

X

s,y,x

✓
�f

s

(x)=y � 1

M

◆
~c
(x) · ~c(ỹ) (74)

subject to 8 (i), (j) 2 S
1

, 8x :

0  C[(x), (j)]  2�k C[(;), (j)]
0  C[(i), (x)]  2�k C[(i), (;)]

X

x

C[(;), (x)]  C[(;), (;)] and
X

x

C[(x), (;)]  C[(;), (;)]
X

x,x0

C[(x), (x0)]  C[(;), (;)]

all vectors have norm bounded by one

The dependence on n clearly enters through the dimension of the matrices C[(i), (j)], which are indexed by words of
length up to n. Note that in particular for the level n = 0 the matrices C[(i), (j)] in (73) become scalars again and we
get back the SPD relaxation (17) - including an additional dummy vector indexed by the empty word.

However generally the programs are defined for bigger and bigger sets of matrices and therefore vectors, providing
more and more constraints and thus reducing the optimal value of the program. Finally, we note that similarly as
for two-player games, the hierarchies of the SDP do not converge to extractors against finite-dimensional quantum
adversaries but instead they converge to extractors against infinite-dimensional quantum adversaries. Whether these
two cases can be di↵erent is a wide open question connected to a major open problem in operator algebra theory:
Connes’ embedding problem [9, 13, 14, 18].
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Appendix A: Useful Lemmas

Theorem A.1 (Grothendieck’s inequality). For any real matrix {Aij}, we have

max

8
<

:
X

i,j

Aij~ai ·~bj : k~aik2  1, k~bjk2  1

9
=

; (A1)

 KG ·max

8
<

:
X

i,j

Aijaibj : ai, bj 2 R, |ai|  1, |bj |  1

9
=

; . (A2)

Theorem A.2 (Cherno↵ bound). Let Xi 2 {0, 1} be independent and identically distributed random variables, and

µ := E {Pi Xi}. Then, we have

P

(
X

i

Xi � (1 + �)µ

)

✓

e�

(1 + �)(1+�)

◆µ

for any � > 0 (A3)

P

(
X

i

Xi  (1� �)µ

)

✓

e��

(1� �)(1��)

◆µ

for any 0 < � < 1 . (A4)

Appendix B: Missing Proofs

Proof of Theorem III.4. We start with the expression 1

D

P
s,y k

P
x

�
�f

s

(x)=y � 1

M

�
~axk2 for the SDP, where the vectors

~ax fulfill the conditions stated in (17). Using Cauchy-Schwarz, we may bound

1

D

X

s,y

�����
X

x

✓
�f

s

(x)=y � 1

M

◆
~ax

�����
2


0

@ 1

D

X

s,y

�����
X

x

✓
�f

s

(x)=y � 1

M

◆
~ax

�����

2

2

1

A
1/2

2m/2 . (B1)

We now take a closer look at the expression in the brackets. Expanding the norm squared gives rise to the expression

1

D

X

s,y

 
X

x

✓
�f

s

(x)=y � 1

M

◆
~ax

!
·
 
X

x0

✓
�f

s

(x0
)=y � 1

M

◆
~ax0

!
(B2)

=
1

D

X

s,y

 
X

x

�f
s

(x)=y~ax

!
·
 
X

x0

�f
s

(x0
)=y~ax0

!

� 1

D

X

s,y

1

M

X

x,x0

�f
s

(x)=y~ax · ~ax0

� 1

D

X

s,y

1

M

X

x,x0

�f
s

(x0
)=y~ax · ~ax0

+
1

D

1

M2

X

s,y

X

x,x0

~ax · ~ax0 . (B3)

Let us examine the cross terms:

1

D

X

s,y

1

M

X

x,x0

�f
s

(x)=y~ax · ~ax0 =
1

D

X

s

1

M

X

x,x0

~ax · ~ax0 , (B4)

since for each fixed pair s, x 2 D⇥N there is exactly one y 2 M such that fs(x) = y. The second cross term evaluates
analogously to the same value, which is also equal to the fourth term in the expansion of the norm, and hence we are
left with

1

D

X

s,y

 
X

x

�f
s

(x)=y~ax

!
·
 
X

x0

�f
s

(x0
)=y~ax0

!
� 1

D

X

s,y

1

M

 
X

x

~ax

!
· 1

M

 
X

x0

~ax0

!
. (B5)
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Introducing the maps  s and ⌧ from `
2

(N) to `
2

(M),

 s : ~ex 7!
X

y

�f
s

(x)=y~ey and ⌧ : ~ex 7! 1

M

X

y

~ey (B6)

this may be written as

1

D

X

s

 s(~a) ·  s(~a)� ⌧(~a) · ⌧(~a) , (B7)

where the dot now means taking the scalar product in the Hilbert space `
2

(M)⌦H and we set ~a =
P

x ~ex⌦~ax 2 `
2

⌦H.
However, this is up to a factor of 1

D exactly the defining expression of a spectral extractor. Hence we may bound

1

D

X

s

 s(~a) ·  s(~a)� ⌧(~a) · ⌧(~a)  2k
"

M
k~ak2 . (B8)

The last norm evaluates to

k~ak2 =
X

x

~ax · ~ax  2�k
X

x

q(x) = 2�k , (B9)

and comparison with (B1) gives the desired bound.

Proof of Theorem III.5. Consider a feasible solution of (12) given by ⇢(x),�, Bs,y all acting on a Hilbert space Q. The
objective function can be written as

1

2d

X

s,y,x

�
�f

s

(x)=y � 2�m
�
Tr[⇢(x)Bs,y]

=
1

2d

X

s,x

X

y2{0,1}

 
m�1X

t=0

1

2m�t�1

t+1Y

k=1

�f
s

(x)
k

=y
k

� 1

2m�t

tY

k=1

�f
s

(x)
k

=y
k

!
Tr[⇢(x)Bs,y] (B10)

=
m�1X

t=0

1

2d

X

s,x

X

y1,y2,...yt+1

tY

k=1

�f
s

(x)
k

=y
k

✓
�f

s

(x)
t+1=y

t+1
� 1

2

◆
Tr[⇢(x)Cs,y1,y2,...,yt+1 ] , (B11)

where we defined

Cs,y1,...,yt

,y
t+1 :=

1

2m�t�1

X

y
t+2,...,ym

2{0,1}

Bs,y
t+2,...,ym

. (B12)

We now start using the particular structure of the extractor in (63). From now, we fix the value of t and the dependence
on t of many variables are omitted to lighten the notation. The seed s can be specified by a = s|St+1

2 {0, 1}l and
b = s|Sc

t+1

2 {0, 1}d�l where Sc
t+1

is the complement on St+1

in the set {1, . . . , d}. We will thus interchangeably use s
and (a, b). Using this notation with the structure of fs, we obtain

1

2d

X

s,y,x

�
�f

s

(x)=y � 2�m
�
Tr[⇢(x)Bs,y]

=
m�1X

t=0

1

2d

X

x
a2{0,1}l

b2{0,1}d�l

X

y1,y2,...yt+1

�h
x,b

(a)=y1...yt

✓
�g

a

(x)=y
t+1

� 1

2

◆
Tr[⇢(x)Ca,b,y1,y2,...,yt+1 ] (B13)

=
m�1X

t=0

1

2l

X

x
a2{0,1}l

X

z2{0,1}

✓
�g

a

(x)=z � 1

2

◆
1

2d�l

X

b2{0,1}d�l

Tr[⇢(x)Ca,b,h
x,b

(a),z] (B14)

where hx,b(a) represents the first t bits of fs(x). Note that for a fixed x and b, the outcome of this function only
depends on the bits of s that belong to one of the sets S

1

, . . . , St. In particular, the first bit of hx,b only depends on
the substring of a corresponding to indices in S

1

\ St+1

. Thus, for any x, b, the function hx,b belongs to the family Ft
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of functions h : {0, 1}l ! {0, 1}t for which the j-th bit hj of h is a function hj : {0, 1}Sj

\S
t+1 ! {0, 1}. Thus, for any

x, b only
Pt

j=1

2|Sj

\S
t+1|  r(m� 1) bits are su�cient to fully describe the function hx,b. As a result, |Ft|  2r(m�1).

Let us define new positive operators on a larger Q⌦H ⌦G system as

⇢̂(x) :=
1

2d�l

X

b2{0,1}d�l

h2F
t

⇢(x)⌦ �h=h
x,b

|hihh|H ⌦ |bihb|G (B15)

�̂ :=
1

|Ft|2d�l

X

b2{0,1}d�l

h2F
t

� ⌦ |hihh|H ⌦ |bihb|G (B16)

Ĉa,z :=
X

b,h2F
t

Ca,b,h(a),z ⌦ |hihh|⌦ |bihb| . (B17)

Note that �̂ as well as
P

x ⇢̂(x) have unit trace and kĈa,zk1  1. In addition,

⇢̂x  1

2d�l

X

b2{0,1}d�l

h2F
t

⇢(x)⌦ |hihh|H ⌦ |bihb|G  |Ft|2�k�̂  2�k+r(m�1)�̂ , (B18)

where we used the fact that ⇢(x)  2�k�. This shows that the newly defined operators ⇢̂(x), �̂, Ĉa,z satisfy the
constraints of (12) for the extractor Ext

one

with min-entropy k � r(m � 1). Looking at the value of the objective
function for this solution, we obtain

1

2l

X

a,z,x

✓
�g

a

(x)=z � 1

2

◆
Tr[⇢̂(x)Ĉa,z] =

1

2l

X

a,z,x

✓
�g

a

(x)=z � 1

2

◆
Tr[⇢̂(x)Ĉa,z] (B19)

=
1

2l

X

a,z,x

✓
�g

a

(x)=z � 1

2

◆
1

2d�l

X

b

Tr[⇢(x)Ca,h(a),z] , (B20)

which is exactly the t-th term in the sum in (B14). To relate Q(Ext
one

, k � r(m � 1)) to C(Ext
one

, k � r(m � 1) �
log(1/")) + ", we use Theorem III.2 and Theorem III.3.

Proposition B.1. Suppose the functions fs : N ! M from the family {fs}s2D are chosen at random with fs(x) and

fs0(x0) uniformly distributed and independent whenever x 6= x0
. Then, we have for N � 16 that

P

8
<

:

������

X

x,x0,s

�f
s

(x)=f
s

(x0
)

�
✓
DN +

DN(N � 1)

M

◆������
� 1

2

DN(N � 1)

M

9
=

;  1

16
. (B21)

This of course includes the case when the functions fs are chosen uniformly and independently, but also the case of
Trevisan’s construction where the one-bit extractor is a randomly chosen function.

Proof of Proposition B.1. We start by separating the cases x = x0 and x 6= x0,

X

x,x0,s

�f
s

(x)=f
s

(x0
)

= DN +
X

s,x 6=x0

�f
s

(x)=f
s

(x0
)

. (B22)

We compute the expectation over the choice of f :

E

f

8
<

:
X

s,x 6=x0

�f
s

(x)=f
s

(x0
)

9
=

; = DN(N � 1)
1

M
, (B23)

simply using the fact then for x 6= x0, fs(x) and fs(x0) are independently chosen. We now would like to show that
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with high probability this random variable is close to its expectation. For that we compute the second moment

E

g

8
><

>:

0

@
X

s,x 6=x0

�f
s

(x)=f
s

(x0
)

1

A
2

9
>=

>;
(B24)

=
X

s1,s2,x1 6=x2,x0
1 6=x0

2

P {fs1(x1

) = fs1(x
0
1

), fs2(x2

) = fs2(x
0
2

)} (B25)

=
X

s1,s2,x1 6=x2,x0
1 6=x0

2,{x1,x0
1} 6={x2,x0

2}

P {fs1(x1

) = fs1(x
0
1

), fs2(x2

) = fs2(x
0
2

)} (B26)

+
X

s1,s2,x1 6=x2,x0
1 6=x0

2,{x1,x0
1}={x2,x0

2}

P {fs1(x1

) = fs1(x
0
1

), fs1(x2

) = fs1(x
0
2

)} (B27)

 D2N(N � 1)(N(N � 1)� 2)
1

M2

(B28)

+ 2
X

s1,s2,x1 6=x2

P {fs1(x1

) = fs1(x
0
1

)} (B29)

= D2N(N � 1)(N(N � 1)� 2)
1

M2

+ 2D2N(N � 1)
1

M
. (B30)

As a result the variance is at most

Var

8
<

:
X

s,x 6=x0

�f
s

(x)=f
s

(x0
)

9
=

; (B31)

 D2N(N � 1)(N(N � 1)� 2)
1

M2

+ 2D2N(N � 1)
1

M
�
✓
DN(N � 1)

1

M

◆
2

(B32)

 2D2N(N � 1)
1

M
. (B33)

Using Chebyshev’s inequality gives with a standard deviation �  p
2D

p
N(N � 1)/M we have

P

8
<

:

������

X

s,x 6=x0

�f
s

(x)=f
s

(x0
)

� DN(N � 1)

M

������
� 4�

9
=

;  1

16
. (B34)

But 4�  4
p
2D

p
N(N � 1)/M  1

2

DN(N�1)

M for N � 16.
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[19] S. Pironio, M. Navascués, and A. Aćın. Convergent Relaxations of Polynomial Optimization Problems with Noncommuting

Variables. Siam Journal on Optimization, 20:2157–2180, 2010.
[20] R. Renner. Security of Quantum Key Distribution. PhD thesis, ETH Zurich, 2005. DOI: 10.1142/S0219749908003256.
[21] R. Renner and R. König. Universally composable privacy amplification against quantum adversaries. In J. Kilian, editor,

Theory of Cryptography, volume 3378 of Lecture Notes in Computer Science, pages 407–425. Springer Berlin Heidelberg,
2005. DOI: 10.1007/978-3-540-30576-7 22.

[22] M. Tomamichel, C. Scha↵ner, A. Smith, and R. Renner. Leftover hashing against quantum side information. Information
Theory, IEEE Transactions on, 57:5524–5535, 2011. DOI: 10.1109/TIT.2011.2158473.


