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Abstract. We consider the related notions of two-prover and of relativistic commitment schemes.
In recent work, Lunghi et al. proposed a relativistic commitment scheme with a multi-round sustain
phase that enables to keep the binding property alive as long as the sustain phase is running. They
prove security of their scheme against classical attacks; however, the proven bound on the error
parameter is very weak: it blows up doubly exponentially in the number of rounds.
In this work, we give a new analysis of the multi-round scheme of Lunghi et al., and we show a
linear growth of the error parameter instead (also considering classical attacks only). Our analysis is
intuitively much simpler than the analysis provided by Lunghi et al. It is based on a new composition
theorem for two-prover commitment schemes. The proof of our composition theorem is based on a
better understanding of the binding property of two-prover commitments that we provide in the
form of new definitions and relations among them. These new insights are certainly of independent
interest and are likely to be useful in other contexts as well.
Finally, our work gives rise to several interesting open problems, for instance extending our results
to the quantum setting, where the dishonest provers are allowed to perform measurements on an
entangled quantum state in order to try to break the binding property.

Introduction
Two-Prover Commitment Schemes We consider the notion of 2-prover commitment schemes, as
originally introduced by Ben-Or, Goldwasser, Kilian and Wigderson in their seminal paper [BGKW88]. In
a 2-prover commitment scheme, the prover (i.e., the entity that is responsible for preparing and opening
the commitment) consists of two agents, P and Q, and it is assumed that these two agents cannot
communicate with each other. With this approach, the classical and quantum impossibility results for
unconditionally secure commitment schemes can be circumvented.

A simple 2-prover bit commitment schemes is the scheme proposed by Crépeau et al. [CSST11], which
works as follows. The verifier V chooses a uniformly random a ∈ {0, 1}n and sends it to P , who replies
with x := y ⊕ a · b, where b is the bit to commit to, and y ∈ {0, 1}n is a uniformly random string known
(only) to P and Q. Furthermore, “⊕” is bit-wise XOR, and “ ·” is scalar multiplication (of the scalar b
with the vector a). In order to open the commitment (to b), Q sends y to V , and V checks if x⊕y = a · b.
It is clear that this scheme is hiding: the commitment x = y⊕a · b is uniformly random and independent
of a no matter what b is. On the other hand, the binding property follows from the observation that in
order to open the commitment to b = 0, Q needs to announce y = x, and in order to open to b = 1, he
needs to announce y = x ⊕ a. Thus, in order to open to both, he must know x and x ⊕ a, and thus a,
which is a contradiction to the no-communication assumption, because a was sent to P only.

In the quantum setting, where the dishonest provers are allowed to share an entangled quantum state
and can produce x and y by means of performing measurements on their respective parts of the state, the
above reasoning for the binding property does not work anymore. Nevertheless, as shown in [CSST11],
the binding property still holds (though with a weaker parameter).

Relativistic Commitment Schemes Roughly speaking, the idea of relativistic commitment schemes,
as introduced by Kent [Ken99,Ken05], is to take a 2-prover commitment schemes as above, and enforce
the no-communication assumption by means of relativistic effects: we place P and Q geographically very
far apart, and execute the scheme quickly enough, so that by the finiteness of the speed of light, there
is not enough time for them to communicate. The obvious downside of such a relativistic commitment
scheme is that the binding property stays alive only for a very short time, i.e., the opening has to
take place almost immediately after the committing, before the provers have the chance to exchange
information.



Motivated by this limitation, Lunghi et al. [LKB+14] proposed what they call a multi-round scheme,
where after the actual commit phase there is a sustain phase, during which the provers and the verifier
keep exchanging messages, and as long as this sustain phase is running, the commitment stays binding
(and hiding), until the commitment is finally opened. Their proposed scheme works as follows. The actual
commit protocol is the commit protocol from the Crépeau et al. scheme: V sends a uniformly random
string a0 ∈ {0, 1}n to P , who returns x0 := y0 ⊕ a0 · b. Then, to sustain the commitment, before P
has the chance to tell a0 to Q, V sends a new uniformly random string a1 ∈ {0, 1}n to Q who replies
with x1 := y1 ⊕ a1 · y0, where y1 ∈ {0, 1}n is another random string shared between P and Q, and the
multiplication a1 · y0 is in a suitable finite field. Then, to further sustain the commitment, V sends a
new uniformly random string a2 ∈ {0, 1}n to P who replies with x2 := y2 ⊕ a2 · y1, etc. Finally, after
the last sustain round where xm := ym ⊕ am · ym−1 has been sent to V , in order to finally open the
commitment, ym is sent to V (by the other prover). See Figure 1. In order to verify the opening, V
computes ym−1, ym−2, . . . , y0 inductively in the obvious way, and checks if x0 ⊕ y0 = a0 · b.

P V Q

commit: ←− a0

x0 := y0 ⊕ a0 · b −→

sustain: a1 −→
←− x1 := y1 ⊕ a1 · y0

←− a2

x2 := y2 ⊕ a2 · y1 −→

a3 −→
←− x3 := y3 ⊕ a3 · y2

open: y3 −→

Fig. 1. The Lunghi et al. multi-round scheme (for m = 3).

What is important is that in round i (say for odd i), when preparing xi, the prover Q must not know
ai−1, but he is allowed to know a1, . . . , ai−2. Thus, execution must be timed in such a way that between
subsequent rounds there is not enough time for the provers to communicate, but they may communicate
over multiple rounds.

As for the security of this scheme, it is obvious that the hiding property stays satisfied up to the open
phase: every single message V receives is one-time-pad encrypted. As for the binding property, Lunghi
et al. prove that the scheme with a m-round sustain phase is εm-binding against classical attacks, where
εm satisfies ε0 = 2−n (this is just the standard Crépeau et al. scheme) and

εm ≤
1

2n+1
+
√
εm−1

for m ≥ 1. Thus, even when reading this recursive formula very liberally by ignoring the 2−(n+1) term,
we obtain that

εm . 2m
√
ε0 = 2−

n
2m ,

i.e., the error parameter blows up doubly exponentially.1 In other words, in order to have a non-trivial εm
we need that n, the size of the strings that are communicated is exponential inm. This means that Lunghi
et al. can only afford a very small number of rounds. For instance, in their practical implementation,
fixing an error parameter of approximately 10−5 ≈ 2−16, they can manage m = 5 and n = 512; beyond
that, i.e. for larger m and thus larger n, the local computation takes too long. This allows them to keep
a commitment alive for 2ms.
1 Lunghi et al. also provide a more complicated recursive formula for εm that is slightly better, but the resulting
blow-up is still doubly exponential.



2. Our Results
Our main goal is to improve the bound on the binding parameter of the above multi-round scheme.
Indeed, our results show that the binding parameter blows up only linearly in m, rather than doubly
exponentially. Explicitly, our results show that (for classical attacks)

εm ≤ 2(m+ 1) · 2−
n−1
2 ≈ m · 2−n

2 .

Using the same n and error parameter as in the implementation of Lunghi et al., we can now afford
approximately m = 2240 rounds. Scaling up the 2ms from the Lunghi et al. experiment for 5 rounds
gives us a time that is larger (by far) than the age of the universe.

We use the following strategy to obtain our improved bound on εm. We observe that the first sustain
round can be understood as committing on the opening information y0 of the actual commitment,
using an extended version of the Crépeau et al. scheme that commits to a string rather than to a
bit. Similarly, the second sustain round can be understood as committing on the opening information
y1 of that commitment from the first sustain round, etc. Thus, thinking of the m = 1 version of the
scheme, what we have to prove is that if we have two commitment schemes S and S ′, and we modify the
opening phase of S in that we first commit to the opening information (using S ′) and then open that
commitment, then the resulting commitment scheme is still binding; note that, intuitively, this is what
one would indeed expect. Given such a general composition theorem, we can then apply it inductively
and conclude security (i.e. the binding property) of the Lunghi et al. multi-round scheme.

Thus, our main result is such a composition theorem, which shows that if S and S ′ are respectively ε-
and δ-binding (against classical attacks), then the composed scheme is (ε+ δ)-binding (against classical
attacks), under some mild assumptions on S and S ′. Hence, the binding parameters simply add up;
this is what gives us the linear growth. The proof of our composition theorem crucially relies on a new
definition of the binding property of 2-prover commitment schemes, which seems to be handier to work
with, but is actually equivalent to the p0 + p1 ≤ 1 + ε definition as for instance used by Lunghi et al.

One subtle issue is that the extended version of the Crépeau et al. scheme to strings, as it is used in
the sustain phase, is not a fully secure string commitment scheme. The reason is that for any y that may
be announced in the opening phase, there exists a string s such that x ⊕ y = a · s; as such, the provers
can commit to some fixed string, and then can still decide to either open the commitment to that string
(by running the opening phase honestly), or to open it to a random string that is out of their control (by
announcing a random y). We deal with this by also introducing a weak version of the binding property,
which captures this limited freedom for the provers, and we show that it is satisfied by the (extended
version of the) Crépeau et al. scheme and that our composition theorem also holds for this weak version.2
Finally, we observe that the composed weakly-binding string commitment scheme is a (strongly) binding
bit commitment scheme in the natural way (i.e., when restricting the domain to a bit).

As such, we feel that our techniques and insights not only give rise to a drastically improved analysis
of the Lunghi et al. multi-round scheme, but they significantly improve our understanding of the security
of 2-prover commitment schemes, and as such are likely to find further applications.

3. Open Problems
Our work gives rise to a list of interesting open problems. For instance, our composition theorem only
applies to pairs S,S ′ of commitment schemes of a certain restricted form, e.g., only one prover should
be involved in the commit phase (as it is the case in the Crépeau et al. scheme). Our proof crucially
relies on this, but there seems to be no fundamental reason for such a restriction. Thus, we wonder if
it is possible to generalize our composition theorem to a larger class of pairs of schemes, or, ultimately,
to all pairs of schemes (that “fit together”). In another direction, some of our observations and results
generalize immediately to the quantum setting, where the two dishonest provers are allowed to compute
their messages by performing measurements on an entangled quantum state, but in particular our main
result, the composition theorem, does not generalize. Also here, there seems to be no fundamental reason,
and thus, generalizing our composition theorem to the quantum setting is an interesting open problem.
Finally, in order to obtain security of the Lunghi et al. multi-round scheme against quantum attacks,
beyond a quantum version of the composition theorem, one also needs to prove security against quantum
attacks of the (extended version of the) original Crépeau et al. scheme as a (weakly binding) string
commitment scheme; by [CSST11] we merely know its “quantum security” as a bit commitment scheme.
2 Actually, we only prove it for this weak version, but the proof for the strong version goes along the same lines.
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Abstract. We consider the related notions of two-prover and of relativistic commitment schemes.
In recent work, Lunghi et al. proposed a relativistic commitment scheme with a multi-round sustain
phase that enables to keep the binding property alive as long as the sustain phase is running. They
prove security of their scheme against classical attacks; however, the proven bound on the error
parameter is very weak: it blows up doubly exponentially in the number of rounds.
In this work, we give a new analysis of the multi-round scheme of Lunghi et al., and we show a
linear growth of the error parameter instead (also considering classical attacks only). Our analysis is
intuitively much simpler than the analysis provided by Lunghi et al. It is based on a new composition
theorem for two-prover commitment schemes. The proof of our composition theorem is based on a
better understanding of the binding property of two-prover commitments that we provide in the
form of new definitions and relations among them. These new insights are certainly of independent
interest and are likely to be useful in other contexts as well.
Finally, our work gives rise to several interesting open problems, for instance extending our results
to the quantum setting, where the dishonest provers are allowed to perform measurements on an
entangled quantum state in order to try to break the binding property.

1 Introduction

Two-Prover Commitment Schemes. We consider the notion of 2-prover commitment schemes, as
originally introduced by Ben-Or, Goldwasser, Kilian and Wigderson in their seminal paper [BGKW88]. In
a 2-prover commitment scheme, the prover (i.e., the entity that is responsible for preparing and opening
the commitment) consists of two agents, P and Q, and it is assumed that these two agents cannot
communicate with each other. With this approach, the classical and quantum impossibility results for
unconditionally secure commitment schemes can be circumvented.

A simple 2-prover bit commitment schemes is the scheme proposed by Crépeau et al. [CSST11], which
works as follows. The verifier V chooses a uniformly random a ∈ {0, 1}n and sends it to P , who replies
with x := y ⊕ a · b, where b is the bit to commit to, and y ∈ {0, 1}n is a uniformly random string known
(only) to P and Q. Furthermore, “⊕” is bit-wise XOR, and “ ·” is scalar multiplication (of the scalar b
with the vector a). In order to open the commitment (to b), Q sends y to V , and V checks if x⊕y = a · b.
It is clear that this scheme is hiding: the commitment x = y⊕a · b is uniformly random and independent
of a no matter what b is. On the other hand, the binding property follows from the observation that in
order to open the commitment to b = 0, Q needs to announce y = x, and in order to open to b = 1, he
needs to announce y = x ⊕ a. Thus, in order to open to both, he must know x and x ⊕ a, and thus a,
which is a contradiction to the no-communication assumption, because a was sent to P only.

In the quantum setting, where the dishonest provers are allowed to share an entangled quantum state
and can produce x and y by means of performing measurements on their respective parts of the state, the
above reasoning for the binding property does not work anymore. Nevertheless, as shown in [CSST11],
the binding property still holds (though with a weaker parameter).

Relativistic Commitment Schemes. Roughly speaking, the idea of relativistic commitment schemes,
as introduced by Kent [Ken99,Ken05], is to take a 2-prover commitment schemes as above, and enforce
the no-communication assumption by means of relativistic effects: we place P and Q geographically very
far apart, and execute the scheme quickly enough, so that by the finiteness of the speed of light, there
is not enough time for them to communicate. The obvious downside of such a relativistic commitment
scheme is that the binding property stays alive only for a very short time, i.e., the opening has to



take place almost immediately after the committing, before the provers have the chance to exchange
information.

Motivated by this limitation, Lunghi et al. [LKB+14] proposed what they call a multi-round scheme,
where after the actual commit phase there is a sustain phase, during which the provers and the verifier
keep exchanging messages, and as long as this sustain phase is running, the commitment stays binding
(and hiding), until the commitment is finally opened. Their proposed scheme works as follows. The actual
commit protocol is the commit protocol from the Crépeau et al. scheme: V sends a uniformly random
string a0 ∈ {0, 1}n to P , who returns x0 := y0 ⊕ a0 · b. Then, to sustain the commitment, before P
has the chance to tell a0 to Q, V sends a new uniformly random string a1 ∈ {0, 1}n to Q who replies
with x1 := y1 ⊕ a1 · y0, where y1 ∈ {0, 1}n is another random string shared between P and Q, and the
multiplication a1 · y0 is in a suitable finite field. Then, to further sustain the commitment, V sends a
new uniformly random string a2 ∈ {0, 1}n to P who replies with x2 := y2 ⊕ a2 · y1, etc. Finally, after
the last sustain round where xm := ym ⊕ am · ym−1 has been sent to V , in order to finally open the
commitment, ym is sent to V (by the other prover). See Figure 1. In order to verify the opening, V
computes ym−1, ym−2, . . . , y0 inductively in the obvious way, and checks if x0 ⊕ y0 = a0 · b.

P V Q

commit: ←− a0

x0 := y0 ⊕ a0 · b −→

sustain: a1 −→
←− x1 := y1 ⊕ a1 · y0

←− a2

x2 := y2 ⊕ a2 · y1 −→

a3 −→
←− x3 := y3 ⊕ a3 · y2

open: y3 −→

Fig. 1. The Lunghi et al. multi-round scheme (for m = 3).

What is important is that in round i (say for odd i), when preparing xi, the prover Q must not know
ai−1, but he is allowed to know a1, . . . , ai−2. Thus, execution must be timed in such a way that between
subsequent rounds there is not enough time for the provers to communicate, but they may communicate
over multiple rounds.

As for the security of this scheme, it is obvious that the hiding property stays satisfied up to the open
phase: every single message V receives is one-time-pad encrypted. As for the binding property, Lunghi
et al. prove that the scheme with a m-round sustain phase is εm-binding against classical attacks, where
εm satisfies ε0 = 2−n (this is just the standard Crépeau et al. scheme) and

εm ≤
1

2n+1
+
√
εm−1

for m ≥ 1. Thus, even when reading this recursive formula very liberally by ignoring the 2−(n+1) term,
we obtain that

εm . 2m
√
ε0 = 2−

n
2m ,

i.e., the error parameter blows up doubly exponentially.1 In other words, in order to have a non-trivial εm
we need that n, the size of the strings that are communicated is exponential inm. This means that Lunghi
et al. can only afford a very small number of rounds. For instance, in their practical implementation,
fixing an error parameter of approximately 10−5 ≈ 2−16, they can manage m = 5 and n = 512; beyond
that, i.e. for larger m and thus larger n, the local computation takes too long. This allows them to keep
a commitment alive for 2ms.
1 Lunghi et al. also provide a more complicated recursive formula for εm that is slightly better, but the resulting
blow-up is still doubly exponential.
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Our Results. Our main goal is to improve the bound on the binding parameter of the above multi-
round scheme. Indeed, our results show that the binding parameter blows up only linearly in m, rather
than doubly exponentially. Explicitly, our results show that (for classical attacks)

εm ≤ 2(m+ 1) · 2−
n−1
2 ≈ m · 2−n

2 .

Using the same n and error parameter as in the implementation of Lunghi et al., we can now afford
approximately m = 2240 rounds. Scaling up the 2ms from the Lunghi et al. experiment for 5 rounds
gives us a time that is larger (by far) than the age of the universe.

We use the following strategy to obtain our improved bound on εm. We observe that the first sustain
round can be understood as committing on the opening information y0 of the actual commitment,
using an extended version of the Crépeau et al. scheme that commits to a string rather than to a
bit. Similarly, the second sustain round can be understood as committing on the opening information
y1 of that commitment from the first sustain round, etc. Thus, thinking of the m = 1 version of the
scheme, what we have to prove is that if we have two commitment schemes S and S ′, and we modify the
opening phase of S in that we first commit to the opening information (using S ′) and then open that
commitment, then the resulting commitment scheme is still binding; note that, intuitively, this is what
one would indeed expect. Given such a general composition theorem, we can then apply it inductively
and conclude security (i.e. the binding property) of the Lunghi et al. multi-round scheme.

Thus, our main result is such a composition theorem, which shows that if S and S ′ are respectively ε-
and δ-binding (against classical attacks), then the composed scheme is (ε+ δ)-binding (against classical
attacks), under some mild assumptions on S and S ′. Hence, the binding parameters simply add up;
this is what gives us the linear growth. The proof of our composition theorem crucially relies on a new
definition of the binding property of 2-prover commitment schemes, which seems to be handier to work
with, but is actually equivalent to the p0 + p1 ≤ 1 + ε definition as for instance used by Lunghi et al.

One subtle issue is that the extended version of the Crépeau et al. scheme to strings, as it is used in
the sustain phase, is not a fully secure string commitment scheme. The reason is that for any y that may
be announced in the opening phase, there exists a string s such that x ⊕ y = a · s; as such, the provers
can commit to some fixed string, and then can still decide to either open the commitment to that string
(by running the opening phase honestly), or to open it to a random string that is out of their control (by
announcing a random y). We deal with this by also introducing a weak version of the binding property,
which captures this limited freedom for the provers, and we show that it is satisfied by the (extended
version of the) Crépeau et al. scheme and that our composition theorem also holds for this weak version.2
Finally, we observe that the composed weakly-binding string commitment scheme is a (strongly) binding
bit commitment scheme in the natural way (i.e., when restricting the domain to a bit).

As such, we feel that our techniques and insights not only give rise to a drastically improved analysis
of the Lunghi et al. multi-round scheme, but they significantly improve our understanding of the security
of 2-prover commitment schemes, and as such are likely to find further applications.

Open Problems. Our work gives rise to a list of interesting open problems. For instance, our com-
position theorem only applies to pairs S,S ′ of commitment schemes of a certain restricted form, e.g.,
only one prover should be involved in the commit phase (as it is the case in the Crépeau et al. scheme).
Our proof crucially relies on this, but there seems to be no fundamental reason for such a restriction.
Thus, we wonder if it is possible to generalize our composition theorem to a larger class of pairs of
schemes, or, ultimately, to all pairs of schemes (that “fit together”). In another direction, some of our
observations and results generalize immediately to the quantum setting, where the two dishonest provers
are allowed to compute their messages by performing measurements on an entangled quantum state, but
in particular our main result, the composition theorem, does not generalize. Also here, there seems to
be no fundamental reason, and thus, generalizing our composition theorem to the quantum setting is an
interesting open problem. Finally, in order to obtain security of the Lunghi et al. multi-round scheme
against quantum attacks, beyond a quantum version of the composition theorem, one also needs to prove
security against quantum attacks of the (extended version of the) original Crépeau et al. scheme as a
(weakly binding) string commitment scheme; by [CSST11] we merely know its “quantum security” as a
bit commitment scheme.

2 Actually, we only prove it for this weak version, but the proof for the strong version goes along the same lines.
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2 Preliminaries

2.1 Basic Notation

Probability Distributions. For the purpose of this work, a (probability) distribution is a function
p : X → [0, 1], x 7→ p(x), where X is a finite non-empty set, with the property that

∑
x∈X p(x) = 1.

For specific choices x◦ ∈ X , we tend to write p(x = x◦) instead of p(x◦). For any subset Λ ⊂ X , the
probability p(Λ) is naturally defined as p(Λ) =

∑
x∈Λ p(x), and it holds that

p(Λ) + p(Γ ) = p(Λ ∪ Γ ) + p(Λ ∩ Γ ) ≤ 1 + p(Λ ∩ Γ )

for all Λ, Γ ⊂ X , and, more generally, that

k∑
i=1

p(Λi) ≤ p(Λ1 ∪ . . . ∪ Λk) +
∑
i<j

p(Λi ∩ Λj) ≤ 1 +
∑
i<j

p(Λi ∩ Λj) (1)

for all Λ1, . . . , Λk ⊂ X . Similarly, for a distribution p : X ×Y → R on two (and similarly more) variables,
probabilities like p(x=y), p(x=f(y)), p(x 6=y) etc. are naturally understood as

p(x=y) = p
(
{(x, y) ∈ X × Y |x = y}

)
=

∑
x∈X ,y∈Y
s.t. x=y

p(x, y)

etc., and the marginals p(x) and p(y) are given by p(x) =
∑
y p(x, y) and p(y) =

∑
x p(x, y), respectively.

Vice versa, given two distributions p(x) and p(y), we say that a distribution p(x, y) on two variables is a
consistent joint distribution if the two marginals of p(x, y) coincide with p(x) and p(y), respectively. We
will make use of the following property on the existence of a consistent joint distributions that maximizes
the probability that x = y; the proof is given in the appendix.

Lemma 2.1. Let p(x) and p(y) be two distribution on a common set X . Then there exists a consistent
joint distribution p(x, y) such that p(x = y = x◦) = min{p(x = x◦), p(y = x◦)} for all x◦ ∈ X .

Protocols. In this work, we will consider 3-party (interactive) protocols, where the parties are
named P , Q and V (the two “provers” and the “verifier”). Such a protocol protPQV consists of a triple
(protP , protQ, protV ) of L-round interactive algorithms for some L ∈ N. Each interactive algorithm takes
an input, and for every round ` ≤ L computes the messages to be sent to the other algorithms/parties
in that round as deterministic functions of its input, the messages received in the previous rounds, and
the local randomness. In the same way, the algorithms produce their respective outputs after the last
round. We write

(outP ‖outQ‖outV )←
(
protP (inP )‖protQ(inQ)‖protV (inV )

)
to denote the execution of the protocol protPQV on the respective inputs inP , inQ and inV , and that the
respective outputs outP , outQ and outV are produced. Clearly, for any protocol protPQV and any input
inP , inQ, inV , the probability distribution p(outP , outQ, outV ) of the output is naturally well defined.

For the purpose of this work, the algorithms protP and protQ for P and Q will be deterministic
(i.e., have no local randomness), and all randomness will be provided by a “resource” resPQ, which
produces (two copies of) a uniformly random bit string r (of suitable length), and protP and protQ take
r as (additional) input. Some, but not all, of our results extend to the quantum setting, where resPQ
produces a bipartite entangled quantum state, and protP and protQ produce their (classical) messages
and respective (classical) outputs by performing quantum operations.

We will often consider protocols for which P and Q do not communicate (or their communication is
limited). This simply means that all the messages that P prepares for Q are “empty” (i.e., some special
symbol ∅).

We can compose two (interactive) algorithms protP and prot′P in the obvious way, by applying prot′P
to the output of protP . The resulting interactive algorithm is denoted as protP ◦prot′P . Composing the re-
spective algorithms of two protocols protPQV = (protP , protQ, protV ) and prot′PQV = (prot′P , prot

′
Q, prot

′
V )

results in the composed protocol protPQV ◦ prot′PQV .
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2.2 2-Prover Commitment Schemes

Definition 2.2. A 2-prover (string) commitment scheme S consists of a resource resPQ, and of two
interactive protocols comPQV = (comP , comQ, comV ) and openPQV = (openP , openQ, openV ) between the
two provers P and Q and the verifier V , with the following semantics. The resource resPQ outputs a bit
string r, chosen according to some distribution, to P and Q:

(r‖r)← resPQ .

The commit protocol comPQV takes as input the bit string r and a bit string s ∈ {0, 1}n for P and Q
(and no input for V ), and outputs a commitment com to V , and some state information to P and Q:

(com‖stateP ‖stateQ)← (comP (s, r)‖comQ(s, r)‖comV ) .

The opening protocol openPQV outputs a string or a rejection symbol to V , and nothing to P and Q:

(∅‖∅‖s)← (openP (stateP )‖openQ(stateQ)‖openV (com))

with s ∈ {0, 1}n ∪ {⊥}. The set {0, 1}n is called the domain of S; if n = 1 then we refer to S as a bit
commitment scheme instead, and we tend to use b rather than s to denote the committed bit.

Whenever we refer to such a 2-prover commitment scheme, we take it as understood that the scheme is
sound and hiding, as defined below, for “small” values of η and δ. Since our focus will be on the binding
property, we typically do not make the parameters η and δ explicit.

Definition 2.3. A 2-prover commitment scheme is η-sound if in an honest execution V ’s output s of
openPQV equals P and Q’s input s to comPQV except with probability η. A 0-sound scheme is also called
perfectly sound.
A 2-prover commitment scheme is δ-hiding if for any commit strategy comV , the distribution of the com-
mitment com, produced as (com‖stateP ‖stateQ) ← (comP (s, r)‖comQ(s, r)‖comV ) with (r‖r)← resPQ,
is δ-almost independent of P and Q’s input s, in the sense that the distributions p(s, com) and p(s)·p(com)
are δ-close in terms of statistical distance. A 0-hiding scheme is also called perfectly hiding.

Defining the binding property is more subtle. First, note that an attack against the binding property con-
sists of a “allowed” resource resPQ for P and Q, and an “allowed” commit strategy comPQ = (comP , comQ)
and an “allowed” opening strategy openPQ = (openP , openQ) for P and Q. Any such attack fixes the
distribution p(s), the distribution of s ∈ {0, 1}n ∪ {⊥} that is output by V after the opening phase, in
the obvious way.

What exactly “allowed” means depends on the model and needs to be specified. Typically, in the
2-prover setting, we only allow strategies comPQ and openPQ with no communication between the two
provers, but we may also be more liberal and allow some well-controlled communication, as we will see
later. Furthermore, we may restrict to classical attacks, or we can consider quantum attacks. In the
former case, resPQ produces shared randomness (as resPQ does), and comP and comQ are classical inter-
active algorithms that compute the outgoing messages (and outputs) as deterministic functions3 of their
respective inputs and the incoming messages, and the same for openP and openQ. In the case of quantum
attacks, resPQ generates a bipartite quantum state and comP , comQ, openP and openQ produce their
messages by performing measurements (that depend on the input and the previous incoming messages)
on this quantum state. Our main result holds for classical attacks only, and so the unfamiliar reader can
safely ignore the possibility of quantum attacks, but some of our results also hold for quantum attacks.

A commonly accepted definition for the binding property of a 2-prover bit commitment scheme, as it
is for instance used in [LKB+14] (up to the factor 2 in the error parameter), is as follows. We assume it
has been specified which attacks are allowed (e.g. those where P and Q do not communicate at all).

Definition 2.4. A 2-prover bit commitment scheme is ε-binding (in the sense of p0+ p1 ≤ 1+2ε) if for
every allowed resource resPQ and commit strategy comPQ, and for every pair of allowed opening strategies
open0PQ and open1PQ, fixing respective distributions p0(b) and p1(b), it holds that

p0(b = 0) + p1(b = 1) ≤ 1 + 2ε .

3 It is without loss of generality to restrict to such deterministic protocols, because all the necessary randomness
can be taken from the resource.
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Example 2.5. Our main working example is the bit commitment scheme by Crépeau et al, where resPQ
produces a uniformly random r ∈ {0, 1}n as shared randomness, comPQV instructs V to sample and send
to P a uniformly random a ∈ {0, 1}n and P returns x := r ⊕ a · b to V , where b is the bit to commit to,
and openPQV instructs Q to send y := r to V and V outputs the (smaller) bit b that satisfies x⊕y = a ·b,
and b := ⊥ in case no such bit exists. It is easy to see that the scheme is 2−n-sound and perfectly hiding
(soundness fails in case a = 0).

For classical provers that do not communicate at all, the scheme is 1
2 · 2

−n binding in the sense of
p0 + p1 ≤ 1+ 2−n, i.e. according to Definition 2.4, and for quantum provers that do not communicate at
all, the scheme is 2−n/2-binding in the sense of p0 + p1 ≤ 1 + 2 · 2−n/2 .

We also want to consider an extended version of the scheme, where the bit b is replaced by a string
s ∈ {0, 1}n in the obvious way (where the multiplication a ·s is then understood in a suitable finite field),
and we want to appreciate this extension as a string commitment scheme; we will refer to this scheme as
CSST n. However, it is a priori not clear what definition is suitable for the binding property. Furthermore,
in this particular scheme, the dishonest provers can always honestly commit to a string s, and can then
decide to honestly open the commitment to s, or open to a random string by announcing a randomly
chosen y—any y satisfies x⊕ y = a · s for some s (unless a = 0, which almost never happens).

3 On the Binding Property of 2-Prover Commitment Schemes

We introduce a new definition for the binding property of 2-prover commitment schemes. In the case of
bit commitment schemes, it is equivalent to Definition 2.4, as we will show. However, we feel that our
definition is closer to the intuition of what is expected from a commitment scheme, and as such it is
easier to work with. Indeed, the proof of our composition result is heavily based on our new definition.
We also introduce the notion of a weak binding property, which captures the binding property that is
satisfied by the string commitment scheme CSST n.

Throughout this section, when quantifying over attacks against (the binding property of) a scheme
S, it is always understood that there is a notion of allowed attacks for that scheme (e.g., all attacks
for which P and Q do not communicate), and that the quantification is over all such allowed attacks.
Also, even though our focus is on classical attacks, much of Sections 3.1 and 3.2 hold in case of quantum
attacks too, and we make it explicit when we (have to) restrict to classical attacks.

3.1 Defining The Binding Property

Intuitively, we say that a scheme is binding if after the commit phase there exists a string ŝ so that no
matter what the provers do in the opening phase, the verifier will output either s = ŝ or s = ⊥ (except
with small probability). Formally, the definition is not in terms of ŝ, but in terms of its distribution.

Definition 3.1 (Binding property). A 2-prover commitment scheme S is ε-binding if for all resources
resPQ and commit strategies comPQ there exists a distribution p(ŝ) such that for every opening strategy
openPQ (which then fixes the distribution p(s) of V ’s output s) there is a consistent joint distribution
p(ŝ, s) such that p(s 6= ŝ ∧ s 6= ⊥) ≤ ε. In short:

∀ resPQ, comPQ ∃ p(ŝ) ∀ openPQ ∃ p(ŝ, s) : p(s 6= ŝ ∧ s 6= ⊥) ≤ ε . (2)

The string commitment scheme CSST n does not satisfy this definition (the bit commitment version does,
as we will show): after the commit phase, the provers can still decide to open the commitment to a fixed
string, chosen before the commit phase, or to a random string that is out of their control. We capture
this by the following relaxed version of the binding property. In this relaxed version, we allow V ’s output
s to be different to ŝ and ⊥, but in this case the provers should have little control over s: for any fixed
target string s◦, it should be unlikely that s = s◦. Formally, this is captured as follows; we will show in
Section 3.3 that CSST n is weakly binding in this sense.

Definition 3.2 (Weak binding property). A 2-prover commitment scheme S is weakly ε-binding if
for all resources resPQ and commit strategies comPQ there exists a distribution p(ŝ) such that for every
opening strategy openPQ (which then fixes the distribution p(s) of V ’s output s) there is a consistent
joint distribution p(ŝ, s) so that for all s◦ ∈ {0, 1}n it holds that p(s 6= ŝ ∧ s = s◦) ≤ ε. In short:

∀ resPQ, comPQ ∃ p(ŝ) ∀ openPQ ∃ p(ŝ, s) ∀ s◦ : p(s 6= ŝ ∧ s = s◦) ≤ ε . (3)
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Remark 3.3. For weakly binding string commitment schemes (with large enough n), we may actually
assume that V never outputs ⊥, since he may output a randomly chosen string s instead.

Remark 3.4. For the (weak or ordinary) binding property, when considering classical attacks, it is suffi-
cient to consider deterministic attacks, where the resource resPQ is trivial: (∅‖∅) ← resPQ (and comPQ

and openPQ are deterministic). To see this, note that for a classical attack with a non-trivial resource
resPQ, every possible output r of resPQ induces a deterministic attack (which runs comPQ and openPQ
on that particular choice of r). The binding property for deterministic attacks then implies the existence
of distributions pr(ŝ) and pr(ŝ, s) as required (in particular, pr(ŝ) does not depend on openPQ). It is then
straightforward to verify that the distributions p(ŝ) =

∑
r p(r) · pr(ŝ) and p(ŝ, s) =

∑
r p(r) · pr(ŝ, s) are

as required for the original (randomized) attack.

Remark 3.5. Clearly, the ordinary binding property (i.e., binding in the sense of Definition 3.1) implies
the weak binding property. Furthermore, in the case of bit commitment schemes it obviously holds that
p(b 6= b̂ ∧ b 6= ⊥) = p(b 6= b̂ ∧ b = 0) + p(b 6= b̂ ∧ b = 1), and thus the weak binding property implies
the ordinary one, up to a factor-2 loss. Furthermore, every weakly binding string commitment scheme
gives rise to a ordinary-binding bit commitment scheme in a natural way, as shown by the following
proposition.

Proposition 3.6. Let S be a weakly ε-binding string commitment scheme. Fix any two distinct strings
s0, s1 ∈ {0, 1}n and consider the bit-commitment scheme S ′ obtained as follows. To commit to b ∈ {0, 1},
the provers commit to sb using S, and in the opening phase V checks if s = sb for some bit b ∈ {0, 1}
and outputs this bit if it exists and else outputs b = ⊥. Then, S ′ is a 2ε-binding bit commitment scheme.

Proof. Fix some resPQ and comPQ for S ′ and note that these can also be used to attack S. Thus, there
exists a distribution p(ŝ) as in Definition 3.2. We define a distribution p(b̂, ŝ) by letting b̂ = 0 if ŝ = s0 and
b̂ = 1 otherwise. This defines p(b̂) by taking the corresponding marginal. Now fix an opening strategy
openPQ for S ′, which again is also a strategy against S. Thus, it gives rise to a distribution p(ŝ, s)
such that p(ŝ 6= s = s◦) ≤ ε for any s◦ (and in particular s◦ = s0 or s1). We define the distribution
p(b̂, b, ŝ, s) = p(ŝ, s)p(b|s)p(b̂|ŝ) which gives us the desired distribution p(b̂, b). Indeed:

p(b̂ 6= b 6= ⊥) = p(b̂ = 1 ∧ b = 0) + p(b̂ = 0 ∧ b = 1)

= p(ŝ 6= s0 ∧ s = s0) + p(ŝ = s0 ∧ s = s1)

≤ p(ŝ 6= s0 ∧ s = s0) + p(ŝ 6= s1 ∧ s = s1) ,

≤ 2ε

and thus S ′ is a 2ε binding bit-commitment scheme. ut

3.2 Relation To The Standard Definition

For bit commitment schemes, our binding property is equivalent to the (p0 + p1)-definition.

Theorem 3.7. A bit-commitment scheme is ε-binding in the sense of p0 + p1 ≤ 1 + 2ε if and only if it
is ε-binding (in the sense of Definition 3.1).

Proof. First, consider a scheme that is ε-binding according to Definition 2.4. Fix a resource resPQ, a
commitment strategy comPQ and opening strategies open0PQ and open1PQ so that p0 = p(b0 = 0) and
p1 = p(b1 = 1) are maximized, where bi ∈ {0, 1} ∪ {⊥} is V ’s output when the dishonest provers
use opening strategy openiPQ. Let p0 + p1 = 1 + 2ε′. Since the scheme is ε-binding, we have ε′ ≤ ε.
We define the distribution p(b̂) as p(b̂ = 0) := p0 − ε′ and p(b̂ = 1) := p1 − ε′. To see that this is
indeed a probability distribution, note that p0, p1 ≥ 2ε′ (otherwise, we would have p0 > 1 or p1 > 1)
and that p(b̂ = 0) + p(b̂ = 1) = p0 + p1 − 2ε′ = 1. Now we consider an arbitrary opening strategy
openPQ which fixes a distribution p(b). By definition of p0 and p1, we have p(b = i) ≤ pi and thus
p(b = i) ≤ p(b̂ = i) + ε′ ≤ p(b̂ = i) + ε. By Lemma 2.1, we conclude that there exists a consistent joint
distribution p(b̂, b) with the property that p(b̂ = b = i) = min{p(b = i), p(b̂ = i)} ≥ p(b = i) − ε, and
thus that p(b̂ 6= b = i) = p(b = i)− p(b̂ = b = i) ≤ ε for i ∈ {0, 1}. This proves one direction of our claim.

For the other direction, consider a scheme that is ε-binding. Fix resPQ and comPQ and let p(b̂) be
a distribution such that for every opening strategy openPQ, there is a joint distribution p(b̂, b) with
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p(b̂ 6= b 6= ⊥) ≤ ε. Now consider two opening strategies open0PQ and open1PQ which give distributions
p(b0) and p(b1). We need to bound p(b0 = 0) + p(b1 = 1). There is a joint distribution p(b̂, b0) such that
p(b̂ 6= b0 6= ⊥) ≤ ε and likewise for b1. Thus,

p(b0 = 0) + p(b1 = 1) = p(b̂ = 0, b0 = 0) + p(b̂ = 1, b0 = 0) + p(b̂ = 0, b1 = 1) + p(b̂ = 1, b1 = 1)

≤ p(b̂ = 0) + p(b̂ = 1) + p(b̂ 6= b0 6= ⊥) + p(b̂ 6= b1 6= ⊥)
≤ 1 + 2ε

which proves the other direction. ut

3.3 Security of CSST n

In this section, we show that CSST n is a weakly binding string commitment scheme against classical
attacks.4 To this end, we introduce yet another version of the binding property (which is meaningful
only for classical attacks) and show that CSST n satisfies this property. Then we show that this version
of the binding property implies the weak binding property (up to some loss in the parameter).

Our new binding property is based on the intuition that it should not be possible to open a commit-
ment to two different values simultaneously (except with small probability). For this, we observe that for
classical attacks, when considering a resource resPQ and a commit strategy comPQ, as well as two open-
ing strategies openPQ and open′PQ, we can run both opening strategies simultaneously on the produced
commitment with two (independent) copies of openV , by applying openPQ and open′PQ to two copies of
the respective internal states of P and Q). This gives rise to a joint distribution p(s, s′) of the respective
outputs s and s′ of the two copies of openV .

Definition 3.8 (Simultaneous opening). A two-prover commitment scheme S is ε-binding in the
sense of simultaneous opening (against classical attacks) if for all resPQ and comPQ, all pairs of opening
strategies openPQ and open′PQ, and all pairs s◦, s′◦ of distinct strings, we have p(s = s◦ ∧ s′ = s′◦) ≤ ε.

Proposition 3.9. CSST n is 2−n-binding in the sense of simultaneous opening against classical attacks.

Proof. Fix a resource resPQ, a commit strategy comP and two opening strategies openQ and open′Q.5 This
then fixes the distribution p(a, x, y, s, y′, s′). Note that y and y′ are produced by openQ and open′Q by
means of acting on the shared randomness alone. As such, the pair y, y′ is independent of a. Furthermore,
s and s′ satisfy x⊕ y = a · s and x⊕ y′ = a · s′. Thus, for any pair s◦, s′◦ of distinct strings, it holds that

p(s = s◦ ∧ s′ = s′◦) ≤ p(x⊕ y = a · s◦ ∧ x⊕ y′ = a · s′◦)
= p(a · s◦ 	 y = x = a · s′◦ 	 y′)
≤ p(a = (y′ 	 y) · (s◦ 	 s′◦)−1)

=
1

2n

which proves the claim. ut

Theorem 3.10. Every scheme S that is ε-binding in the sense of simultaneous opening (against classical
attacks) is weakly ε′-binding (against classical attacks) with ε′ =

√
2ε.

Proof. Fix resPQ and comPQ against S. Enumerate all strings in the domain {0, 1}n of S as s1, . . . , s2n ,
and for every i ∈ {1, . . . , 2n} let openiPQ be an opening strategy that maximizes pi := p(s = si), where s
is the output of the verifier when P and Q use this strategy. We assume without loss of generality that
the pi’s are in descending order. We define p(ŝ) as follows. Let N ≥ 2 be an integer which we will fix
later. By Definition 3.8 and inequality (1), it holds that

N∑
i=1

pi ≤ 1 +

(
N

2

)
· ε = 1 +

N(N − 1)

2
· ε

4 It is understood that the allowed attacks against CSST n are those where the provers do not communicate.
5 Note that Q is inactive during the commit, and P during the opening phase.
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where we let pi = 0 for i > 2n in case N > 2n. We would like to define p(ŝ) as p(ŝ = si) := pi−(N−1)ε/2
for all i ≤ N, 2n; however, this is not always possible because pi −Nε/2 may be negative. To deal with
this, let N ′ be the largest integer such that N ′ ≤ N and p1, . . . , pN ′ ≥ (N − 1)ε/2. It follows that

N ′∑
i=1

pi ≤ 1 +
N ′(N ′ − 1)

2
· ε ≤ 1 +

N ′(N − 1)

2
· ε and thus

N ′∑
i=1

pi = 1 +
N ′(N − 1)

2
· ε̃

for some ε̃ ≤ ε. We now set p(ŝ) to be p(ŝ = si) := pi − (N − 1)ε̃/2 ≥ pi − (N − 1)ε/2 ≥ 0 for all
i ≤ N ′. Now consider an opening strategy openPQ and let p(s) be the resulting output distribution.
By definition of the pi, it follows that p(s = si) ≤ pi for all i ≤ 2n, and pi ≤ p(ŝ = si) + (N − 1)ε/2
for all i ≤ N ′. By Lemma 2.1, we can conclude that there exists a consistent joint distribution p(ŝ, s)
with p(ŝ = s = si) = min{p(s = si), p(ŝ = si)} ≥ p(s = si) − (N − 1)ε/2 for all i ≤ N ′, and thus
p(ŝ 6= s = si) = p(s = si) − p(ŝ = s = si) ≤ (N − 1)ε/2 for all i ≤ N ′ Furthermore, when N ′ < i ≤ N ,
we have p(ŝ 6= s = si) = p(s = si) ≤ pi < (N − 1)ε/2 by definition of N ′. Since the pi are sorted in
descending order, it follows that for all i > N

p(ŝ 6= s = si) = p(s = si) ≤ pi ≤ pN ≤
1

N

N∑
i=1

pi ≤
1

N
+
N − 1

2
· ε

and thus, we have shown for all s◦ ∈ {0, 1}n that

p(ŝ 6= s = s◦) ≤
1

N
+
N − 1

2
· ε.

We now select N so that this value is minimized: it is easy to verify that the function f : R>0 → R>0,
x 7→ 1/x+ ε(x− 1)/2 has its global minimum in

√
2/ε; thus, we pick N := d

√
2/εe, which gives us

p(ŝ 6= s = s◦) ≤
1

N
+
N − 1

2
· ε ≤ 1√

2/ε
+

√
2/ε

2
· ε =

√
2ε

for any s◦ ∈ {0, 1}n, as claimed. ut

Combining Proposition 3.9 and Theorem 3.10, we obtain the following corollary.

Corollary 3.11. CSST n is weakly ε-binding against classical attacks with ε = 2−
n−1
2 .

4 Composing Commitment Schemes

4.1 The Composition Operation

We consider two 2-prover commitment schemes S and S ′ of a restricted form, and we compose them to
a new 2-prover commitment scheme S ′′ = S ? S ′ in a well-defined way; our composition theorem then
shows that S ′′ is secure (against classical attacks) if S and S ′ are. We start by specifying the restriction
to S and S ′ that we (have to) impose.

Definition 4.1. Let S = (resPQ, comPQV , openPQV ) and S ′ = (res′PQ, com
′
PQV , open

′
PQV ) be two 2-

prover string commitment schemes. We call the pair (S,S ′) eligible if the following three properties hold,
or they hold with the roles of P and Q exchanged.

1. The respective opening and commit phases are of the form

comPQV = (comP , idQ, comV ) , openPQV = (∅P , openQ, openV ) and com′PQV = (idP , com
′
Q, com

′
V ),

where id is the trivial protocol that outputs its inputs (and no communication takes place), and ∅
is the trivial protocol that has no output (and does not communicate). In other words, prover Q is
inactive in the commit and P is inactive in the opening phase of S, and P is inactive in the commit
phase of S ′ (but both provers may be active in the opening phase).
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2. The opening phase of S is of the following simple form: Q sends a bit string y ∈ {0, 1}m to V , and V
computes s deterministically as s = Extr(y, a, x), where a is V ’s randomness for comV and x collects
the messages that P sent to V during the commit phase.6

3. The domain of S ′ contains (or equals) {0, 1}m.

An example of an eligible pair of 2-prover commitments is the pair (CSST n,XCSST n), where XCSST n
coincides with the Cépeau et al. scheme CSST n except that the roles of P and Q are exchanged. The
reader can safely think of this concrete example.

Remark 4.2. Given that for an eligible pair (S,S ′), comQ and openP are fixed to idQ and ∅P , respectively,
it is good enough to specify the commit and open phases of S by means of comPV = (comP , comV ) and
openQV = (openQ, openV ), respectively. Vice versa, whenever we specify the commit and open phases of
a 2-prover commitment scheme by means of comPV = (comP , comV ) and openQV = (openQ, openV ), we
take it as understood that comQ and openP are fixed to idQ and ∅P ; similarly for S ′.

Furthermore, for an eligible pair (S,S ′), we take it as understood that when considering attacks
against the binding property of S, the allowed commit and open strategies also satisfy comQ = idQ and
openP = ∅P (and thus are specified by comP and openQ), and thus in particular no communication is
allowed between P and Q. Similarly, for S ′, we take it as understood that any allowed commit strategy
satisfies comP = idP , and thus in particular there is no communication before the start of the opening
phase.

We now define the composition operation (see also Figure 2).

Definition 4.3. Let S = (resPQ, comPV , openQV ) and S ′ = (res′PQ, com
′
QV , open

′
PQV ) form an eligible

pair of 2-prover commitment schemes. Then, their composition S ?S ′ is defined as the 2-prover commit-
ment scheme (resPQ, comPV , open

′′
PQV ) with open′′PQV := openV ◦open′PQV ◦com′QV ◦openQ. This means

that committing is done by means of committing using S, and to open the commitment, Q uses openQ to
locally compute the opening information y and he commits to y with respect to the scheme S ′, and then
this commitment is opened (to y), and V computes and outputs s = Extr(a, x, y).

Furthermore, when considering attacks against the binding property of S ? S ′, we declare that the
allowed attacks are those of the form (resPQ, comP , open

′
PQ ◦ ptoqPQ ◦ com′Q), where resPQ is an allowed

resource and comP an allowed commit strategy for S, com′Q and open′PQ are allowed commit and opening
strategies for S ′, and ptoqPQ is a one-way communication protocol that allows P to send a message to Q
(see also Figure 3).7

Remark 4.4. It is immediate that S ?S ′ is a commitment scheme in the sense of Definition 2.2, and that
it is sound and hiding if S and S ′ are (in both cases, the error parameters add up). Also, it is intuitively
clear that S ? S ′ should be binding if S and S ′ are: committing to the opening information y and then
opening the commitment allows the provers to delay the announcement of y (which is the whole point of
the exercise), but it does not allow them to change y, by the binding property of S ′; thus, S ? S ′ should
be (almost) as binding as S. This intuition is confirmed by our composition theorem below.

We stress that the composition S ? S ′ can be naturally defined for a larger class of pairs of schemes
(e.g. where both provers are active in the commit phase of both schemes), and the above intuition
still holds. However, our proof only works for this restricted class of (pairs of) schemes. Extending the
composition result in that direction is left as an open problem.

Remark 4.5. We observe that if (S,S ′) is an eligible pair, then so is (XS,S ? S ′), where XS coincides
with S except that the roles of P and Q are exchanged. In particular, if (S,XS) is an eligible pair, then
so is (XS,S ?XS). As such, we can then compose XS with S ?XS, and obtain yet another eligible pair
(S,XS ?S ?XS), etc. Applying this to the schemes S = CSST n, we obtain the multi-round scheme from
Lunghi et al. [LKB+14]. As such, our composition theorem below implies security of their scheme—with
a linear blow-up of the error term (instead of doubly exponential).

6 This restriction on S is actually without loss of generality: we may always assume that the commitment com
consists of V ’s randomness and the incoming messages, and we may always assume that in the opening phase
the provers just announce the shared randomness.

7 This one-way communication models that in the relativistic setting, sufficient time has passed at this point for
P to inform Q about what happened during the execution of comP .
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Fig. 2. The composition of S and S ′ (assuming single-round commit phases and that V ’s message equals its local
randomness). The dotted arrow indicates communication allowed to the dishonest provers.

Before stating (and proving) the composition theorem, we need to single out one more relevant parameter.

Definition 4.6. Let (S,S ′) be an eligible pair, which in particular means that V ’s action in the opening
phase of S is determined by a function Extr. We define k(S) := maxa,x,s |{y |Extr(y, a, x) = s}|.

I.e., k(S) counts the number of y’s that are consistent with a given string s (in the worst case). Note
that k(CSST n) = 1: for every a, x, s ∈ {0, 1}n there is at most one y ∈ {0, 1}n such that x⊕ y = a · s.

4.2 The Composition Theorem

In the following composition theorem, we take it as understood that the assumed respective binding
properties of S and S ′ hold with respect to a well-defined respective classes of allowed attacks. Further-
more, these allowed attacks need to be classical attacks; thus, our composition theorem only works for
classical dishonest provers—extending it to quantum provers is left as an open problem.

Theorem 4.7. Let (S,S ′) be an eligible pair of 2-prover commitment schemes, and assume that S and
S ′ are respectively weakly ε- and δ-binding against classical attacks. Then, their composition S ′′ = S ?S ′
is a weakly (ε+ k(S) · δ)-binding 2-prover commitment scheme against classical attacks.

Proof. For simplicity, we assume that both schemes are such that V never outputs ⊥ in the opening
phase (see also Remark 3.3); the proof goes along the same lines in case of possible ⊥-outputs.

We first consider the case k(S) = 1. We fix an arbitrary attack (resPQ, comP , open
′′
PQ) against S ′′,

where open′′PQ is of the form open′′PQ = open′PQ ◦ptoqPQ ◦com′Q, and we fix an arbitrary target string s◦.
Without loss of generality, we may assume the attack to be deterministic (i.e., resPQ is trivial); as such,
x is a function x(a) of a. Such an attack fixes the distribution p(a, y), and thus the distribution p(s) for
V ’s output s = Extr(y, a, x(a)).

Note that comP is also a commit strategy for S. As such, by the (weak) binding property of S,
there exists a distribution p(ŝ), only depending on resPQ and comP , so that the property specified in
Definition 3.2 is satisfied for every opening strategy openQ for S. We will show that it is also satisfied
for the (arbitrary) opening strategy open′′PQ for S ′′, except for a small increase in ε: we will show that
there exists a consistent joint distribution p(ŝ, s) so that p(ŝ 6= s ∧ s = s◦) ≤ ε+ δ. This then proves the
claim.
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To show existence of such a joint distribution, we “decompose and reassemble” the attack strategy
(resPQ, comP , open

′
PQ◦ptoqPQ◦com′Q) for S ′′ into an attack strategy (resPQ, com

′
Q, newopen

′
PQ(a)) for S ′

with newopen′PQ(a) := open′PQ ◦ptoqPQ ◦ comP (a), and where comP (a) locally runs (comP ||comV ) using
the specific choice a for V ’s randomness (see also Figure 3).8 Thus, we consider a fixed commit strategy
and one opening strategy newopen′PQ(a) for every possible choice of a. Note that the resulting distribution
of y is p(y|a). Furthermore, we set y◦ to be the unique string such that Extr(y◦, a, x(a)) = s◦; recall, we
assume for the moment that k(S) = 1.9 It follows from the weak binding property of S ′ that there exists
a distribution p(ŷ), only depending on com′Q so that for every choice of a there exists a consistent joint
distribution p(ŷ, y|a) so that p(ŷ 6= y ∧ y = y◦|a) ≤ δ. Note that here, consistency in particular means
that p(ŷ|a) = p(ŷ). This joint conditional distribution p(ŷ, y|a), together with the deterministic choice
of y◦ when given a, and together with the distribution p(a) of a, then naturally defines the distribution
p(a, ŷ, y, y◦), which is consistent with p(a, y) considered above, and satisfies p(ŷ 6= y ∧ y = y◦) ≤ δ.

com com

com' com'

res

open'open'

a

x

y

V

V

V

P

Q

PQ

PQ

newopen'
PQ

Fig. 3. Constructing the opening strategy newopen′PQ against S ′.

The existence of p(ŷ) now gives rise to an opening strategy openQ for S; namely, sample ŷ according
to p(ŷ) and output ŷ. Note that the joint distribution of a and ŷ in this “experiment” is given by

p(a) · p(ŷ) = p(a) · p(ŷ|a) = p(a, ŷ) ,

i.e., is consistent with the distribution p(a, ŷ, y, y◦) above. By Definition 3.2, we know there exists a joint
distribution p(ŝ, s̃), consistent with p(ŝ) fixed above and with p(s̃) determined by s̃ := Extr(ŷ, a, x(a)),
and such that p(ŝ 6= s̃ ∧ s̃ = s◦) ≤ ε. We can now “glue together” p(ŝ, s̃) and p(a, ŷ, y, y◦, s̃), i.e., find a
joint distribution that is consistent with both, by setting

p(a, ŷ, y, y◦, s̃, ŝ) := p(a, ŷ, y, y◦, s̃) · p(ŝ|s̃) .

With respect to this distribution, it holds that

p(ŝ 6= s ∧ s = s◦) ≤ p
(
(ŝ 6=s ∧ s=s◦) ∧ (s= s̃ ∨ s 6=s◦)

)
+ p
(
¬(s= s̃ ∨ s 6=s◦)

)
= p(ŝ 6=s ∧ s=s◦ ∧ s= s̃) + p(s 6= s̃ ∧ s=s◦)
= p(ŝ 6= s̃ ∧ s̃=s◦ ∧ s= s̃) + p

(
Extr(y, a, x(a)) 6= Extr(ŷ, a, x(a)) ∧ Extr(y, a, x(a)) = s◦

)
≤ p(ŝ 6= s̃ ∧ s̃=s◦) + p(y 6= ŷ ∧ y=y◦)
≤ ε+ δ .

8 We are using here that Q is inactive during comPQ and P during com′PQ, and thus the two “commute”.
9 Furthermore, we can safely ignore the case where there is no such y◦, because then s can anyway not hit s◦.
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Thus, p(a, y, ŝ) gives rise to the required joint distribution p(ŝ, s) (by setting s = Extr(y, a, x(a))).
For the case where k(S) > 1, we can reason similarly. The only difference is that we choose y◦

uniformly at random among those that satisfy Extr(y◦, a, x(a)) = s◦. This then has the effect that in the
bound on p(ŝ 6= s ∧ s = s◦), the probability p(y 6= ŷ ∧ y = y◦) is replaced by k(S) · p(y 6= ŷ ∧ y = y◦),
which then results in the claimed bound. ut
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A Proof of Lemma 2.1

We start by introducing an event ∆ in the respective probability spaces given by the distributions p(x)
and p(y) by means of declaring that

p(x=x◦ ∧∆) = min{p(x = x◦), p(y = x◦)} = p(y=x◦ ∧∆)

for every x◦ ∈ X . Note that p(∆) is well defined (by summing over all x◦). In order to find a consistent
joint distribution p(x, y), it suffices to find a consistent joint distribution p(x, y|∆) for p(x|∆) and p(y|∆),
and a consistent joint distribution p(x, y|¬∆) for p(x|¬∆) and p(y|¬∆). The former, we choose as

p(x = x◦ ∧ y = x◦|∆) := min{p(x = x◦), p(y = x◦)}/p(∆)

for all x◦ ∈ X , and p(x = x◦ ∧ y = y◦|∆) := 0 for all x◦ 6= y◦ ∈ X (this defines the “diagonal" of p(x, y));
and the latter as

p(x = x◦ ∧ y = y◦|¬∆) := p(x = x◦|¬∆) · p(y = y◦|¬∆)

for all x◦, y◦ ∈ X . It is straightforward to verify that these are indeed consistent joint distributions, as
required, so that p(x, y) = p(x, y|∆) ·p(∆)+p(x, y|¬∆) ·p(¬∆) is also consistent. Furthermore, note that
p(x= y|∆) = 1 and p(x= y|¬∆) = 0; the latter holds because we have p(x= x◦ ∧ ∆) = p(x = x◦) or
p(y = x◦ ∧ ∆) = p(y = x◦) for each x◦ ∈ X , and thus p(x= x◦ ∧ ¬∆) = 0 or p(y = x◦ ∧ ¬∆) = 0. As
such, ∆ is the event x = y, and therefore p(x = y = x◦) = p(x=x◦ ∧∆) = min{p(x = x◦), p(y = x◦)}
for every x◦ ∈ X as required. ut

13


