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2Institute of Theoretical Physics and Astrophysics, University of Gdańsk, 80-952 Gdańsk, Poland
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Recently the first physically realistic protocol amplifying the randomness of Santha-Vazirani
sources using a finite number of no-signaling devices and with a constant rate of noise has been pro-
posed, however there still remained the open question whether this can be accomplished under the
minimal conditions necessary for the task. Namely, is it possible to achieve randomness amplification
using only two no-signaling devices and in a situation where the violation of a Bell inequality implies
only an upper bound for some outcome probability for some setting combination? Here, we solve this
problem and present the first device-independent protocol for the task of randomness amplification
of Santha-Vazirani sources using a device consisting of only two non-signaling components. We show
that the protocol can amplify any such source that is not fully deterministic into a totally random
source while tolerating a constant noise rate and prove the security of the protocol against general
no-signaling adversaries. The minimum requirement for a device-independent Bell inequality based
protocol for obtaining randomness against no-signaling attacks is that every no-signaling box that
obtains the observed Bell violation has the conditional probability P (x|u) of at least a single input-
output pair (u, x) bounded from above. We show how one can construct protocols for randomness
amplification in this minimalistic scenario.

INTRODUCTION

Random number generators are ubiquitous, finding
applications in varied domains such as statistical sam-
pling, computer simulations and gambling scenarios.
While certain physical phenomena such as radioactive
decay or thermal noise have high natural entropy, there
are also many computational algorithms that can pro-
duce sequences of apparently random bits. In many
cryptographic tasks however, it may be necessary to
have trustworthy sources of randomness. As such,
developing so-called device-independent protocols for
generating random bits is of paramount importance.

We consider the task of randomness amplification,
that is to convert a source of partially random bits to
one of fully random bits. The paradigmatic model of a
source of randomness is the Santha-Vazirani (SV) source
[1], a model of a biased coin where the individual coin
tosses are not independent but that rather the bits Yi
produced by the source obey
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2
− ε ≤ P (Yi = 0|Yi−1, . . . , Y1,W ) ≤ 1

2
+ ε (1)

for some 0 ≤ ε < 1
2 . Here ε is a parameter describing the

reliability of the source of randomness, the task being to
convert a source with ε < 1

2 into one with ε → 0. The
random variable W denotes a knowledge of a potential
adversary. Interestingly, this task is known to be impos-
sible with classical resources, a single SV source cannot

be amplified [1].
In [3], the non-local correlations in quantum mechan-

ics were shown to provide an advantage in the task of
amplifying an SV source. A device-independent proto-
col for generating truly random bits was demonstrated
starting from a certain critical value of ε(≈ 0.06), where
the device-independence refers to the fact that one need
not trust the internal workings of the device. An im-
provement was made in [5] where using an arbitrar-
ily large number of spatially separated devices, it was
shown that one could amplify randomness starting from
any initial ε < 1

2 . In [6], we demonstrated a device-
independent protocol which used a constant number of
space-like separated components and amplified sources
of arbitrary initial parameter ε < 1

2 while at the same
time tolerating a constant amount of noise in its imple-
mentation.

MOTIVATION - THE CHALLENGE OF MINIMAL
ASSUMPTIONS

For fundamental as well as practical reasons, it is vi-
tally important to minimize the number of spatially sep-
arated components used in a protocol. As such, devis-
ing a protocol with the minimum possible number of
components (namely, two space-like separated ones for
a protocol based on a Bell test) while at the same time,
allowing for robustness to errors in its implementation
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is crucial. Note that since there are examples in quan-
tum information where multi-partite protocols are easy
to formulate while bipartite ones are difficult or even not
known to exist (such as the bipartite NPT bound entan-
glement problem) the question about a two-device pro-
tocol was not just technical.

A necessary condition for a device-independent Bell-
based protocol for obtaining randomness against no-
signaling attacks is that for some input u∗ ∈ U, out-
put x∗ ∈ X and a constant c < 1, every no-signaling
box {P (x|u)} that obtains the observed Bell violation has
P (x = x∗|u = u∗) ≤ c. i.e.,

∃(x∗,u∗) s.t. ∀{P (x|u)} with B.{P (x|u)} = 0

P (x = x∗|u = u∗) ≤ c < 1, (2)

where B.{P (x|u)} = 0 denotes that the box achieves
algebraic violation of the inequality. Note that while
the Bell inequality violation guarantees Eq.(2) for some
x∗,u∗ for each NS box, here the requirement is for a
strictly bounded common entry P (x = x∗|u = u∗) for
all boxes leading to the observed Bell violation. It is
straightforward to see that if Eq. (2) is not met, then no
device-independent protocol for obtaining randomness
can be built out of the observed non-local correlations.
If in addition to the necessary condition in Eq. (2), we
also had for the same input-output pair (u∗, x∗) that

c̃ ≤ P (x = x∗|u = u∗) (3)

for some constant c̃ > 0, then clearly one can con-
struct a device-independent protocol to extract random-
ness in this scenario. Here, we present a fully device-
independent protocol that allows to amplify the ran-
domness of any ε-SV source under the minimal neces-
sary condition in Eq. (2) by observing that it is enough
that the lower bound presented above holds for some
box Q, which has quantum realization. A novel element
of the protocol is an additional test (to the usual test for
violation of a Bell inequality) that the honest parties per-
form, akin to partial tomography of the boxes, that en-
sures that additionally Eq.(3) is also met for a sufficient
number of runs, demanding thereby that their box be-
have like a quantum box Q. The protocol uses a device
consisting of only two no-signaling components and tol-
erates a constant error rate, we present a proof of secu-
rity of the protocol against general no-signaling adver-
saries (not limited to the use of quantum boxes).

THE SCENARIO AND ASSUMPTIONS

We work in the following scenario: The honest par-
ties, Alice and Bob has access each a device with two
components one for each of them. A adversary Eve
holds her own device. The honest parties has also ac-
cess to the Santha-Vazirani source SV.

In this scenario the non-signaling assumption is im-
portant, that is that no component (or device) can
change statistics of some component (or device). E.g.
Eve, in no run of her device can change statistics of Al-
ice’s and Bob’s components by changing her inputs. We
will elaborate now more specifically about all assump-
tions (For detiles of them, under which we prove the se-
curity of the protocol see the Supplemental Material of
[10]).

Apart from the above mentioned non-signaling as-
sumption, there is also a time-ordered no-signaling
structure assumed on different runs of a single compo-
nent, the outputs in any run may depend on the previ-
ous inputs within the component but not on future in-
puts. Moreover, we also assume that the structure of
the box is fixed independently of the SV source, in other
words that the box is an unknown and arbitrary input-
output channel that is independent of the SV source. It
is worth noting that no randomness may be extracted
under these assumptions in a classical setting, while the
violation of the Bell inequality by certain quantum boxes
allows to amplify randomness in a device-independent
setting.

Our main result is a two-party protocol to amplify the
randomness of SV sources. Formally we prove the fol-
lowing:

Theorem 1. For every ε < 1
2 , there is a protocol using an ε-

SV source and two non-signaling devices with the following
properties:

• Using the devices poly(n, 1/δ) times, the protocol ei-
ther aborts or produces n bits which are δ-close to uni-
form and independent of any side information.

• Local measurements on many copies of a two-party en-
tangled state, with poly(1− 2ε) error rate, give rise to
devices that do not abort the protocol with probability
larger than 1− 2−Ω(n).

The protocol for the task of randomness amplification
from Santha-Vazirani sources has the following struc-
ture. The two honest parties Alice and Bob use bits
from the ε-SV source to choose the inputs to their no-
signaling boxes in multiple runs of a Bell test and ob-
tain their respective outputs. They check for the viola-
tion of a Bell inequality and abort the protocol if the test
condition is not met. The novel part of the protocol is
a subsequent test that the honest parties perform that
ensures when passed the presence of sufficient number
of runs performed with boxes that have randomness in
their outputs. If both tests in the protocol are passed,
the parties apply a randomness extractor to the output
bits and some further bits taken from the SV source. The
output bits of the extractor constitute the output of the
protocol, which we show to be close to being fully ran-
dom and uncorrelated from any no-signaling adversary.
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OUTLINE OF THE PROOF

The proof of security of the protocol follows along
similar lines to the proof we presented in [6] but with
some crucial differences which we now elaborate. As in
previous works on randomness amplification [3, 5, 6],
the idea of the protocol is to use the ε-SV source to
choose the measurement settings in a Bell test. After
verifying that the expected violation of the Bell inequal-
ity is obtained and conditioned upon another test being
passed (the requirement of a new test in our protocol is
explained below), the measurement outcomes are com-
bined along with further bits from the SV source using
a randomness extractor [2, 4] to yield the final random
bits S. The devices may have been prepared by a supra-
quantum adversary Eve who may have used arbitrary
no-signaling resources for the task. Eve could also have
had access to the SV source and therefore could have a
classical random variable correlated to the bits from the
SV source as long as the constraint in Eq.(1) is obeyed.

Let us first recall that for the task of randomness am-
plification of SV sources, one needs Bell inequalities
where quantum mechanics can achieve the maximal no-
signaling value of the inequality [3], failing this condi-
tion for sufficiently small ε, the observed correlations
may be faked with classical deterministic boxes. How-
ever, Bell inequalities with this property are not suffi-
cient, this is exemplified by the tripartite Mermin in-
equality [11] as noted in [3]. This inequality is alge-
braically violated in quantum theory using a GHZ state,
however for any function of the measurement outcomes
one can find no-signaling boxes which achieve the max-
imum violation of the inequality and for which this par-
ticular function is deterministic thereby providing an at-
tack for Eve to predict with certainty the final output
bit. While [5] and [6] considered Bell inequalities with
more parties, the problem of finding two-party alge-
braically violated Bell inequalities (alternatively known
as pseudo-telepathy games) with the property of ran-
domness for some function of the measurement out-
comes was open. Unfortunately, none of the bipartite
Bell inequalities tested so far have the property that
all no-signaling boxes which maximally violate the in-
equality have randomness for some function of the mea-
surement outcomes f(x) for some input u (the same for
all boxes) in the sense that for all such boxes

1

2
− γ ≤ P (f(x)|u) ≤ 1

2
+ γ (4)

for some 0 < γ < 1
2 . We call Bell inequalities with prop-

erty (4) as guaranteeing strong randomness.
The Bell inequality we consider for the task of ran-

domness amplification is a modified version of the bi-
partite inequality based on Kochen-Specker games in
[7]. The inequality involves two parties Alice and Bob,

each making one of nine possible measurements and ob-
taining one of four possible outcomes and is explained
further in the Supplemental Material of [10]. The box
Q which the honest provider of device can produce to
create it is obtained by measuring observables from this
Bell inequality on a two-qubit maxially entangled state.
Even though it does not guarantee the strong random-
ness in Eq.(4) for any function of the measurement out-
comes f(x) for any input u, it has the redeeming feature
of giving weak randomness in the following sense. For
all no-signaling boxes which algebraically violate the in-
equality, there exists one measurement setting u∗ and
one outcome x∗ for this setting such that

0 ≤ P (x = x∗|u = u∗) ≤ 1

2
+ γ

∀{P (x|u)} s.t B · {P (x|u)} = 0 (5)

for some 0 < γ < 1
2 . The above fact is checked by use of

a standard linear programming technique elaborated in
the Supplemental Material of [10].

We propose a novel technique in the form of a sec-
ond test akin to partial tomography subsequent to the
Bell test which allows us to extract randomness in this
minimal scenario of weak randomness. This second test
simply checks for the number of times the output x∗ ap-
pears when the measurement setting u∗ is chosen, the
analysis of this test is done as for the Bell test by an ap-
plication of the Azuma-Hoeffding inequality.

Clearly to do the above mentioned tomography, one
needs enough number of u∗ settings to appear when
chosen from SV source. Where SV an i.i.d. distribu-
tion say with probability p of u∗, by Chernoff bound,
we would be sure to expect np times in n runs this mea-
surement to occure with probability exponentially close
to 1. Now, despite the SV source is not an i.i.d distribu-
tion, it is pretty random, in a sense that it obeys the so
called Generalized Chernoff bound [8, 9], that ensures
that with high probability when the inputs are chosen
with such a source, the measurement setting u∗ appears
in a linear fraction of the runs. Thus, conditioned on
both tests in the protocol being passed (which happens
with large probability with the use of the SV source and
good quantum boxes by the honest parties), we obtain
that with high probability over the input, the output is a
source of linear min-entropy.

This allows us to use known results on randomness
extractors for two independent sources of linear min-
entropy [2], namely one given by the outputs of the
measurement and the other given by the SV source. As
shown in [6], one can use extractors secure against clas-
sical side information even in the scenario of general no-
signaling adversaries by accepting a loss in the rate of
the protocol, i.e., by increasing the output error. The
randomness extractor used in the protocol is a non ex-
plicit extractor from [2]. It readily follows from the re-
sults in [6] that one can also get a protocol with an ex-
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plicit extractor using a device with three no-signaling
components with an additional de-Finetti theorem for
no-signaling devices with subsystems chosen using a
Santha-Vazirani source (see Protocol II with the use of
Lemma 13 in [6]). Counting the devices components,
with Protocol II, we obtain robust randmoness amplifi-
cation with 2 devices (4 comoponents) with explicit ex-
tractor, and with Protocol I, we achieve the same with
single device (2 components) with non-expilicit extractor.
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