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I. INTRODUCTION

First developed in the 1970s, fiber-optic communication systems have boosted the rate of classical information
transfer and played a major role in the advent of the information age. The possibility to encode information in
quantum states using single photons and transmit them through optical channels has led to the development of
quantum key distribution systems[1]. However, the intrinsic channel attenuation becomes a major barrier for efficient
quantum communication over continental scales, due to the exponential decay of communication rate [2]. In addition,
due to quantum no-cloning theorem[3], quantum states of photons cannot be amplified without any disturbance in
contrast to classical communication. To overcome these challenges, quantum repeaters (QRs) have been proposed for
the realization of long-distance quantum communication[4].

The essence of QRs is to divide the total distance of communication into shorter intermediate segments connected
by QR stations, in which both loss errors from fiber attenuation and operation errors from operation imperfections can
be corrected. Loss errors can be suppressed by either heralded entanglement generation (HEG)[4, 5] or quantum error
correction (QEC)[6–10] as listed in Fig. 1. During HEG, quantum entanglement can be generated with techniques
such as two-photon interference, the success of which, is conditioned on the click patterns of the detectors in between.
Loss errors are suppressed by repeating this heralded procedure until the two adjacent stations receive the confirmation
of certain successful detection patterns via two-way classical signaling. Alternatively, one may encode the logical qubit
into a block of physical qubits that are sent through the lossy channel and use QEC to restore the logical qubit with
only one-way signaling from the intermediate stations to the destination. Quantum error correcting codes can correct
no more than 50% loss rates deterministically due to the no-cloning theorem [10, 11].

To suppress operation errors, one may use either heralded entanglement purification (HEP)[12, 13] or QEC[6–8, 10]
as listed in Fig. 1. In HEP, multiple low-fidelity Bell pairs are consumed to probabilistically generate a smaller
number of higher-fidelity Bell pairs. The high fidelity Bell pairs can be then used for state transmission or key
generation. Like HEG, to confirm the success of purification , two-way classical signaling between repeater stations
for exchanging measurement results is required. Alternatively, QEC can correct operation errors using only one-way
classical signaling.

II. THREE GENERATIONS OF QUANTUM REPEATERS

Based on the methods used to suppress loss and operation errors, we can classify various QRs into three
generations[14]. The first generation of QRs uses HEG and HEP to suppress loss and operation errors,
respectively[4, 5]. It starts with purified high-fidelity entangled pairs with separation L0 = Ltot/2

n created and
stored in adjacent stations. At k-th nesting level, two entangled pairs of distance Lk−1 = 2k−1L0 are connected to
extend entanglement to distance Lk = 2kL0 [15]. As practical gate operations and entanglement swapping inevitably
cause the fidelity of entangled pairs to drop, HEP can be incorporated at each level of entanglement extension[12, 13].
With n nesting levels of connection and purification, a high-fidelity entangled pair over distance Ln = Ltot can be
obtained. The first generation of QRs reduces the exponential overhead in direct state transfer to only polyno-
mial overhead, which is limited by the two-way classical signaling required by HEP between non-adjacent repeater
stations. The communication rate still decreases polynomially even after optimization [16] with distance and thus
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FIG. 1: A list of methods to correct loss and operation errors. Depending on the methods used to correct the errors, QRs are
categorized into three generations.

becomes very slow for long distance quantum communication. The communication rate of the first generation of QRs
can be boosted using temporal, spatial, and/or frequency multiplexing associated with the internal degrees of freedom
for the quantum memory[5, 17].

The second generation of QRs uses HEG to suppress loss errors and QEC to correct operation errors[6, 7]. First,
the encoded states |0〉L and |+〉L are fault-tolerantly prepared using the Calderbank-Shor-Steane (CSS) codes and
stored at two adjacent stations. Then, an encoded Bell pair |Φ+〉L = 1√

2
(|0, 0〉L + |1, 1〉L) between adjacent stations

can be created using teleportation-based non-local CNOT gates[18, 19] applied to each physical qubit in the encoded
block using the entangled pairs generated through HEG process. Finally, QEC is carried out when entanglement
swapping at the encoded level is performed to extend the range of entanglement. The second generation uses QEC to
replace HEP and therefore avoids the time-consuming two-way classical signaling between non-adjacent stations. The
communication rate is then limited by the time delay associated with two-way classical signaling between adjacent
stations and local gate operations and it decreases poly-logarithmically with total distance of communication. Note
that If the probability of accumulated operation errors over all repeater stations is sufficiently small, we can simply
use the second generation of QRs without encoding.

The third generation of QRs relies on QEC to correct both loss and operation errors[8–10]. The quantum information
can be directly encoded in a block of physical qubits (photons) that are sent through the lossy channel. If the loss and
operation errors are sufficiently small, the received physical qubits can be used to restore the whole encoding block,
which is retransmitted to the next repeater station. The third generation of QRs only needs one-way signaling and
thus can achieve very high communication rate, just like the classical repeaters only limited by local operation delay.

III. OPTIMAL QUANTUM REPEATER SCHEMES

To present a systematic comparison of different quantum repeater protocols, we need to consider both temporal and
physical resources. The temporal resource depends on the rate, which is limited by the time delay from the two-way
classical signaling (first and second generations) and the local gate operation (second and third generations). The
physical resource depends on the total number of qubits needed for HEP (first and second generations) and QEC
(second and third generations)[10, 20].

We can compare the three generations of QRs using a cost coefficient which is the resource overhead (qubits ×
time) for the creation of one secret bit over 1 km. Besides the fiber attenuation Latt, the cost coefficient depends on
generalized experimental parameters, the coupling efficiency ηc, the gate error probability εG, and the gate time t0. We
systematically compare the three generations of quantum repeaters using the cost coefficient for varying experimental
parameters.

We find that the parameter space can be divided into several regions, each of which has a particular generation
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of QRs that performs mostly efficiently with minimum cost. These different parameter regions can be associated
with drastically different architectural designs of quantum repeaters with different possible physical implementations.
Our work will provide a guideline for the optimal design of quantum networks across global scales. In future, the
integration of different generations of QRs will enable the creation of a secure quantum internet[21].
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