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Among the most remarkable results in the Quantum Information Theory of the last five years, the protocols of
Randomness Expansion [2] and Randomness Amplification [3] [4] should be considered. In fact, these protocols make
it possible the generation of true random numbers, i.e. distributed in an uniform and independent way with respect
to any possible side information, both classical and quantum. Randomness is indeed expanded or amplified by means
of Bell’s measurements on quantum correlated systems and the degree of unpredictability of the outcomes is put in
relation with the violation of Bell’s inequalities. According to the extent of the violation, one can estimate the amount
extractable true random numbers, certified to be unpredictable also in the presence of some Local Hidden Variables
theory.

A disadvantage of these protocols lies in the fact that, at present time, their experimental realization is extremely
demanding because loophole-free violations of multiparties Bell inequalities are required. If the assumptions with
respect LHV theories are relaxed, it turns out that for applications in both Classical and Quantum Information
Technology, quantum random number generators (QRNG) based only on the Born’s rule are far more practical to
implement.

A typical QRNG implements the photon welcher weg paradigm, with a photon prepared in an eigenstate |ψ〉 of
the observable ΠX , i.e. {|+〉, |−〉}, and measured with ΠZ . In the ideal case, |ψ〉 is pure and the least number
of extractable true random bits associated to the binary outcomes z ∈ Z is given by the min-classical entropy
H∞(Z) = − log2 maxz Tr [ΠZ |ψ〉〈ψ|] = 1. In practical realizations, although it results impossible to forge pure states
or keep them pure (especially for commercial QRNG), H∞(Z) continues to be used to quantify the randomness of
the generator and, more importantly, to calibrate randomness extractors, as if the prepared state was a pure generic
|ψ〉 = cos(θ)|0〉+ eiφ sin θ|1〉. A common practice is to assert the degree of randomness of a QRNG by means of tests
of randomness which analyze a-posteriori the statistical quality of the numbers produced.

An approach consistent with the Quantum Information Theory must take into account the fact that a mixed state
leaves room for side information. In particular, quantum side information might be exploited by an eavesdropper
having access to a physical system E correlated with the measured one. In other words, the randomness extractable
from a not pure state cannot be considered unpredictable in the sense of Born’s rule: numbers obtained from a mixed
system may appear random and present a high content of classical min-entropy (and consequently pass the tests) only
because other degrees of freedom are ignored.

We propose a method which lets Alice, the user of the QRNG, to extract unpredictable and therefore secure bits
from a quantum system A, also if it is not prepared in a pure state. In particular we accounts for the case of an
eavedropper, Eve, who can use the quantum side information to predict the outcome of the generator holding a
quantum system E correlated with A. This is possible by using the min-entropy conditioned on E, i.e. Hmin(Z|E).
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FIG. 1. Scheme of the QRNG. The source of randomness
is the state ⇢A that can be correlated with a larger system
E. An initial perfect random seed of length t(m) is used to

switch between the {M̂z} and {N̂x} POVMs, from which the
random variables Z and X are extracted. The variable Z is
used to generate the random sequence, while the variable X is
used to evaluate how many true random bits can be extracted
by Z. Y represents the final true random sequence.

result correctly predicts that the guessing probability can
reach unity and so no true random bits can be extracted
in this case.

In order to exploit the result of eq. (6) it is necessary to
estimate the max-entropy of the source ⇢A = TrE [⇢AE ].
However, since the POVM {M̂z} and {N̂x} are incom-
patible, it is not possible to measure them at the same
time. We then need to switch randomly between M̂z and
N̂x during the random bit generation (see Figure 1). The
measurements are chosen by using a seed of true random-
ness that our method is able to expand. From this point
of view, our method can be seen as a random number
expansion protocol.

We now show that the number of random extracted
bits is greater than the required seed. Let m the to-
tal number of measurements. We decide that, over m,
the number of measurements in the POVM {N̂x} will be
nX = dpme, namely the probability of measuring in the
X basis is approximately 1p

m
. To randomly choose nX

among m measurements we need a number of bits given
by t(m) = dlog2

m!
nX !(m�nX)!e. This is the length of the

random seed required for our randomness expansion.

The probabilities of outcomes in the X basis are given
by px = TrA[N̂x⇢A] and the asymptotic lower bound of
the min-entropy is Hmin(Z|E) � q � H1/2(X). From
the experimental point of view we need to estimate the
max-Entropy H1/2(X) by using the nX outcomes. If we
denote by nx the number of outcomes such that X = x,
we can estimate the max-entropy by using the Bayesian

estimator defined in [20]

eH1/2({nx}) = 2 log2[
�(nX + d)

�(nX + d + 1
2 )

d�1X

x=0

�(nx + 3
2 )

�(nx + 1)
] .

(7)
The Bayesian estimator has a lower variance with respect

to the frequentist estimator eHf
1/2 = 2 log2[

Pd�1
x=0

q
nx

nX
].

Moreover, for low max-entropies, the frequentist estima-
tor has a negative bias that overestimates the bound on
the min-entropy.

Then, given m measurements, the number of extracted
random bits are the outputs of the Z measurement,
given by m � nX : due to the bound (6), at least
(m�nX)(q �H1/2(X)) are true random bits. If we sub-
tract the number of bits t(m) required for the seed, we
can estimate the random bits generation rate per mea-
surement as

er({nx}) =
bsec

m
, (8)

where bsec is the number of generated true random bits :

bsec = (m � nX)[q � eHmax({nx})] � t(m) . (9)

It is worth noticing that, in the infinite size limit m !
+1, the seed length is given by t(m) ⇠ p

m log2

p
m,

the estimator eH1/2({nx}) ⇠ H1/2(X), and the rate ap-
proaches the asymptotic limit

er ��! r(Z) = q � H1/2(X) . (10)

Since the number of extracted random bits are quadrat-
ically larger than the initial seed bits, the generator can
work in loop: an initial seed is expanded, and part of the
extracted randomness is fed as a new seed.

Experimental realization - We have experimentally
tested our method with two di↵erent random number
generators implemented by photon pairs generated in the
|HV i state by spontaneous parametric down conversion
(SPDC). See Methods for details about the source. The
first generator is a single qubit QRNG, operated by an
heralded single photon source: in our SPDC source, one
photon of the pair, measured in the |Hi state, is used
as trigger, while the second represents the signal. By
measuring the signal photon in the Z = {|+i, |�i} bases
and in the X = {|Hi, |V i} basis, we generate the random
variables Z and X. Here we denote with |±i the diagonal
polarization states 1

2 (|Hi ± |V i). The second generator
is a 4-level system (ququart) QRNG, represented by the
pair of photons. In this case the Z and X bases are re-
spectively given by {| + +i, | + �i, | � +i, | � �i} and
{|HV i, |V V i, |HHi, |V Hi}.

We first analyze the qubit QRNG. By choosing di↵er-
ent values of m we performed nX = dpme measurements
in the X basis and nZ = m � nX measurements in the
Z basis, obtaining the sequences X and Z. The two se-
quences are used to evaluate the classical max-entropy

FIG. 1. Scheme of the QRNG. The source of randomness is the state ρA that can be correlated with a larger system E. An
initial perfect random seed of length t(m) is used to switch between the Z and X measurement basis, from which the random
variables Z and X are extracted. The variable Z is used to generate the random sequence, while the variable X is used to
evaluate how many true random bits can be extracted by Z. Y represents the final true random sequence.

An exact estimation of the min-conditional entropy would require the knowledge of the information possesed by
Eve but typically Alice does not even know whether there is an eavesdropper. However a bound to Hmin(Z|E) can be
derived by adapting to the case of QRNG the uncertainty principle for min- and max- conditional entropies introduced
in [5]. In the protocol we devised then, two kinds of measurements are performed: given e.g. a qubit supposedly
prepared in the |ψ〉 = |+〉 state, random numbers z ∈ Z are obtained by projecting it onto the {|0〉, |1〉} basis but, in
addition, the measurement basis is randomly swapped to {|+〉, |−〉} with outcomes x ∈ X. By means of these check
measurements it is then possible to estimate the bound to Hmin(Z|E) by applying the entropic uncertainty principle



3

adapted to the QRNG case, i.e.

Hmin(Z|E) ≥ log2 d−Hmax(X)

where d is the dimension of the Hilbert space and Hmax(X) corresponds to the Rényi entropy of order 1/2. E.g.
for the qubit case log2 d = 1: if the state is pure Hmax(X) is null and therefore the bound corresponds to ideal value
of Hmin(Z), cfr. Figure 1. On the contrary if the state is mixed Hmin(Z|E) is always less than the value one would
be obtained using the classical min-entropy.
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FIG. 2. Average experimental rate for a qubit QRNG. With blue circles we show the experimental average rate r̃ of true
random bits per measurement, while the continuous red line represent the theoretical prediction. Shaded red area represents
the theoretical standard deviation of the rate, while gray rectangles show the experimental standard deviation of the rate.
Green crosses show the classical min-entropy estimated on the Z random variable.

To test the protocol, we experimentally implemented QRNGs employing both qubits and ququarts. In particular
the results of the experiment for the qubit case are presented in Figure 2: the average neat amount of true random
bits r̃ is plotted as a function of the number m of measurements being d√me the number of measurements used for
the check basis. It is interesting to note, therefore, that since the experimental state is not pure, Hmin(Z) would
always overestimate the true content of random bits extractable from the QRNG.

By calibrating randomness extractors on the value of Hmin(Z|E) Alice can extract only the randomness of quantum
origin, getting rid of the so-called accidental randomness due to the mixedness of the state and possibly known by
Eve. In particular, part of the extracted bits can be fed back into the generator for the further selection of the check
measurements, achieving then a quadratic expansion of the initial random seed used for the first estimation of the
entropy.

On this regard, conversely to the extraction based on a-posteriori erroneous entropy estimation, this protocol can
be regarded as a dynamical extractor which provides resiliency to the generator against those factors which could
make the state less pure and then the outcome less unpredictable.
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