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The goal of position-based cryptography is for an hon-
est party to use her spatio-temporal position as her
only credential in a cryptographic protocol. In particu-
lar, Position-Verification aims at verifying that a certain
party, called the prover, holds a given position in space-
time. Such a protocol typically goes as follows: a set of
verifiers will coordinate and send some challenge to the
prover, and it is expected that only someone sitting in
the supposed position of the prover can successfully pass
the challenge.

Two papers established that information theoretic se-
curity is not possible for Position-Based Quantum Cryp-
tography (PBQC) protocols: neither in the classical [1],
nor in the quantum [2] regime. More precisely, it is al-
ways possible for a coalition of adversaries to convince the
verifiers, even if none of the adversary sits in the spatio-
temporal region where the prover is supposed to be. At
the same time, the best known attack strategies require
the adversaries to share very entangled states: the at-
tacks described in [2] are based on Vaidman’s protocol
for nonlocal computation [3] and consist in the cheaters
teleporting some quantum state back and forth, with a
total cost in terms of required EPR pairs that scales dou-
ble exponentially in n, the number of qubits involved in
the PBQC protocol. Later, new generic attacks based
on port-based teleportation[4] were proposed and require
only exponential entanglement to succeed [5]. Finally, it
is also know that a linear amount of entanglement is not
su�cient to break the PBQC protocol [5], [6].

A major open question in the field is to bridge the
gap between lower and upper bounds: does there exist a
protocol that requires exponentially many EPR pairs to
break, or are all PBQC protocols insecure against a coali-
tion of adversaries that shares polynomially many EPR
pairs? While we do not settle this question in the present
paper, we make some progress towards it by exhibiting
new attack strategies with polynomial complexity against
a large family of practical protocols. These attacks rely
on teleportation gates and their precise complexity can
be quantified with the notion of Cli↵ord hierarchy [7] of
a quantum gate. We then introduce a new family of pro-
tocols, that generalizes a construction by Lau and Lo [8],
which appears to be immune against these polynomial-
complexity attacks.

Another main challenge is to determine whether there
exist some PBQC protocol resistant to channel imper-
fections, either losses or noise, between the verifiers and
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the prover. Some approach was recently developed in [9].
Here, we argue that our new protocols provide an alter-
native route towards loss tolerance because the quantum
part of the challenge can be distributed to the prover in
advance compared to the classical part of the challenge.
Therefore, the protocol becomes loss-tolerant provided
that the honest parties have access to reasonably good
quantum memories.

I. PBQC PROTOCOLS

For simplicity, we mainly focus on one-dimensional
protocols where two verifiers V

0

and V
1

aim at verifying
the position of a prover P located between them. More-
over, without loss of generality, we can always assume
that the position P is exactly at the middle of V

0

and V
1

and that it takes one unit of time for light to travel from
V
0

(or V
1

) to P .
In this one-dimensional case, a coalition of cheaters

consists of two players, Alice and Bob, whose goal is to
win a distributed game G where their respective input is
the challenge part given by V

0

or V
1

, and their output
should match that of a honest prover.

A. Protocol Family 1

Our first family of protocols corresponds to games de-
noted by G

1

(n,U , ⌘) where n refers to the number of
qubits involved in the protocol, U is a set of n-qubit uni-
taries, and ⌘ is the tolerance threshold.

1. The verifier V
0

chooses an n-qubit unitary operator
U 2R U and an n-bit string x = (x

1

, . . . , xn) 2R

{0, 1}n. V
0

prepares | i = U |xi, where |xi =Nn
i=1

|xii, and |0i, |1i correspond to the compu-
tational basis. V

0

sends x and U to V
1

through
some secure authenticated classical channel.

2. V
0

sends the n qubit quantum state | i to prover
P at time 0. V

1

sends the unitary U to P at time
t = 0

3. The prover P receives both | i and U at time
t = 1. After receiving | i and U , prover P com-
putes U †| i = |xi, where x 2 {0, 1}n and measures
it in computational basis, obtaining some outcome
string y. P then sends back y to both V

0

and V
1

.

4. The prover P wins the game if V
0

and V
1

receive
the same string y at time t = 2, and if the Ham-
ming distance between x and y is less than ⌘n:
dH(x, y)  ⌘n.
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B. Protocol Family 2

Our second family of protocols, denoted by G
2

(n, t, ⌘),
is based on interleaved group product. Here, we assume
single-qubit gates and t refers to the size of the product
of such unitaries that the prover will need to implement.
More formally, we have:

1. V
0

chooses a random bit string x 2R {0, 1}n and 2t
single-qubit unitaries: u

1

, . . . ut, v1, . . . , vt and in-
forms V

1

of these choices thanks to a secure authen-
ticated classical channel. V

0

prepares the n-qubit
state | i =

Nn
i=1

U |xii where U =
Qt

i=1

uivi.

2. At time t = 0, V
0

sends the state | i as well as the
classical description of (u

1

, . . . , ut) to the prover,
and V

1

sends the classical description of (v
1

, . . . , vt)
to P .

3. At time t = 1, the prover receives | i, computes
U =

Qt
i=1

uivi, applies (U†)⌦n to | i and measures
the resulting state in the computational basis, ob-
taining some outcome y 2 {0, 1}n, which is sent to
both V

0

and V
1

.

4. The prover P wins the game if V
0

and V
1

both
receive an identical string y at time t = 2, and if
dH(x, y)  ⌘n.

Interestingly for this protocol, the honest prover is only
required to measure a qubit in a given basis, which is
quite practical. We note that a similar family of protocols
was considered in [8], but more verifiers were considered,
which made the protocol less practical. Here we make
the choice that the same unitary U is applied to all the
qubits. A variant of the protocol would be to send n suc-
cessive challenges to the prover, with n di↵erent choices
for the unitary.

In order to fully define this protocol, we need to choose
a measure on the set of single-qubit unitaries, correspond-
ing to the random choice of u

1

, . . . , ut, v1, . . . vt and u. We
choose the Haar measure on the unitary group U(2) in
the following sense:

• U is chosen from the Haar measure on U(2).

• u
1

, . . . , ut, v1, . . . , vt�1

are chosen independently
from the Haar measure on U(2).

• vt is computed as vt = utvt�1

ut�1

· · · v
1

u
1

U .

In fact, for a practical implementation, each of the uni-
tary should be described with a given (finite) level of
accuracy, meaning that describing a unitary is done with
say m bits. We ignore this subtlety in the present paper.

II. ATTACKS BASED ON THE CLIFFORD
HIERARCHY FOR THE FIRST FAMILY

The Cli↵ord Hierarchy introduced in [7] is an infinite
hierarchy of sets C

1

(n) ⇢ C
2

(n) ⇢ · · · ⇢ Ck(n) · · · of

n-qubit unitaries where C
1

(n) = Pn corresponds to the
Pauli group (on n qubits), and the higher levels are de-
fined recursively by:

U 2 Ck+1

(n) i↵ U�U† 2 Ck(n) for all � 2 C
1

(n).

When n is clear from context, we simply write Ck instead
of Ck(n) for the kth level of the Cli↵ord hierarchy for n-
qubit gates. It should be noted that the first two levels
of the hierarchy are groups, namely the Pauli and the
Cli↵ord groups, whereas none of the higher levels are
groups.
We define the Cli↵ord complexity of the set U denoted

by Cli↵Compl(U) to be the minimum number of EPR
pairs that Alice and Bob must share to perfectly win the
game G

1

(n,U , 1).
It is easy to see that if the unitary U is a Pauli matrix,

then Alice and Bob can win the game G(n, 1, 1) without
sharing any entanglement because | i is also a basis state
|yi. The two strings x and y coincide on the qubits for
which U is the identity or a Z Pauli matrix, and di↵er
for the other qubits. Therefore, Alice simply needs to
measure | i in the computational basis and to forward
her results to Bob, who can recover the correct string x
using his knowledge of U . This shows that

Cli↵Compl(C
1

(n)) = 0.

If the unitary U belongs to the Cli↵ord group C
2

, then
Alice and Bob can again win the game perfectly if they
share n EPR pairs. The idea is for Alice to teleport the
state | i to Bob using the n EPR pairs. Bob obtains the
state �| i where � 2 C

1

is a Pauli correction. Applying
the unitary U† to his state, Bob obtains

U†�UU †| i = U†�U |xi,

where U†�U 2 C
2

. This means that Bob simply needs to
measure his state in the computational basis, and forward
his result to Alice. Once they know both the value of �
and the result of the measurement, both Alice and Bob
are able to recover the correct value of the string x and
they win the game. This proves that

Cli↵Compl(C
2

(n))  n.

If the unitary U to be implemented belongs to the kth

level of the Cli↵ord hierarchy, then Alice and Bob can
apply an iterative procedure that still allows them to win
the game perfectly. We show that

Theorem 1.

Cli↵Compl(Ck(n))  4n 4n(k�2). (1)

The attack is general and works for any n-qubit gate
in some given level of the Cli↵ord hierarchy. In the con-
text of PBQC protocols, however, the interesting set of
gates U from which the unitary to be implemented is cho-
sen, is often more restricted. Indeed, if the protocol is
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to be practical, then a honest prover should be able to
implement the unitaries reasonably e�ciently. For this
reason, it is interesting to consider unitaries described by
quantum circuits.

In a practical scenario, where the quantum states given
to Alice are photonic qubits, it makes sense to consider
photonic implementations for the quantum circuit, and
therefore to consider unitaries with a fixed layout for
the quantum circuit, and adjustable single and two-qubit
gates. This is typically the case for experimental imple-
mentations based on integrated photonics [10].

For this reason, the set U of unitaries considered in
the first family of protocols could be described by a fixed
layout, and a specific unitary U 2 U is then described
by giving the value of each single or two-qubit gate in
the layout. For a quantum circuit based on linear optics,
the layout L corresponds to the position of the phase-
shifters and beamsplitters, and the unitary is given by
the specific values of the phase-shifts and transmission of
the beamsplitters.

We are interested in the complexity of attacks for such
schemes as a function of the depth and width of such
quantum circuits and prove:

Theorem 2. Let L be the layout of a quantum cir-
cuit acting on n-qubit state of depth d and consisting of
at most r-qubit gates in Ck. Then Cli↵Compl(UL) 
4rd(k�2) ⇥ (4rn)d.

III. SECOND FAMILY OF PROTOCOLS

By construction, the second family of protocols seems
to be immune against the previous attacks: each gate is
chosen from the Haar measure (i.e. not from some low
level of the Cli↵ord hierarchy) and the circuit has large
depth. We study two attack strategies for these proto-
cols, using either port-based teleportation, or the previ-
ous attacks together with the Solovay-Kitaev theorem to
approximate any gate by a product of gates in C

2

or C
3

.
Both attacks have exponential complexity.

Theorem 3. Port-based teleportation provides an
attack strategy against G

2

(n, t, 1 � ✏) that requires

exp(O(t log(t/✏))) EPR pairs.

Theorem 4. The Cli↵ord hierarchy together with the
Solovay-Kitaev approximation provide an attack against

G
2

(n, t, 1�✏) that requires 24t log
c( 2t

✏ )n EPR pairs, where
c < 3 and ⌘ = ✏.

In addition to their inherent security against all known
attacks strategies, the protocol from the second fam-
ily can be straightforwardly modified to be made loss-
tolerant. The crucial point to note here is that these
protocols appear to remain secure even if the quantum
state is distributed in advance compared to the classical
information required to decide in which basis to measure
the state. From this observation, we propose the follow-
ing modification of these protocols:
In addition to the verifiers, there is a central “bank”

of quantum states available to the prover. This bank
(whose role can be played by the verifiers) distributes
quantum states, along with some identification number,
to interested parties. The value of the states is not re-
vealed to the client but the verifiers have access to a
complete listing of pairs: (state ID/ state value). When
a prover wants to play a PBQC game, she should there-
fore obtain a quantum state from the bank, put it in a
quantum memory, and then inform the verifiers of the
state ID. Then, the verifiers can apply the usual proto-
col, with the exception that the state | i does not need
to be distributed since the game is played with the state
the prover obtained from the bank.

It seems to us that these modified protocols are as
secure as the original ones. More precisely, we could not
think of any attack working against the modified version
that would not also work against the original version.

The advantage of this modified version is that the
quantum channel between the verifiers and the prover
is replaced by the quantum memory of the prover. This
can be quite advantageous in a scenario where the physi-
cal distance between the verifiers and the prover is large,
meaning that fiber optics communication would lead to
high losses, provided that the prover has access to a good
quantum memory.
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1 Introduction

The goal of position-based cryptography is for an honest party to use her spatio-temporal position
as her only credential in a cryptographic protocol. In particular, Position-Verification aims at
verifying that a certain party, called the prover, holds a given position in space-time. Such a
protocol typically goes as follows: a set of verifiers will coordinate and send some challenge to the
prover, and it is expected that only someone sitting in the supposed position of the prover can
successfully pass the challenge.

Such protocols have been studied in the classical setting where the challenges are described by
classical information, and it was shown by [1] that information-theoretic security could never be
obtained in the standard (Vanilla) model. More precisely, it is always possible for a coalition of
adversaries to convince the verifiers, even if none of the adversary sits in the spatio-temporal region
where the prover is supposed to be. Note, however, that the same paper gives secure constructions
in the Bounded-Retrieval Model, which is a variant of the Bounded-Storage Model.

A possible way-out of this no-go theorem would be to consider a quantum setting. Indeed,
several classical tasks which are known to be impossible in the classical domain can be achieved
in the quantum domain: this is the case for instance of secret key expansion [2], randomness
amplification [3] or randomness expansion [4].

Position-based cryptography in the quantum setting was first investigated under the name of
quantum tagging by Kent around 2002, but only appeared in the literature much later in [5] where
attacks against possible quantum constructions are described. Malaney independently introduced
a quantum position verification scheme in [6]. An example of a quantum protocol for position
verification is one with two verifiers: one sending a qubit |�i = U |xi with x 2 {0, 1} and U some
unitary, and the second verifier sending a classical description of the unitary U . The task for the
prover is then to measure the qubit in the basis {U |0i, U |1i} and to return the classical value of x
to both provers. There are many variations around this protocol, and the intuition for the possible
security of such protocols is that only someone sitting in P can obtain both U and |�i, perform
the required measurement, and return the correct value x on time.

In [7] Lau and Lo extended the attack from [5] to show that the above intuition is only correct
if the unitary U is not a Cli↵ord gate. Otherwise, a couple of cheaters, Alice lying between V

0

and P , and Bob lying between V
1

and P , can always fool the verifiers provided that they share a
small number of EPR pairs. This result was later extended by Buhrman et al. [8] who showed that

⇤
Inria, EPI SECRET, B.P. 105, 78153 Le Chesnay Cedex, France. Email: kaushik.chakraborty@inria.fr.

†
Inria, EPI SECRET, B.P. 105, 78153 Le Chesnay Cedex, France. Email: anthony.leverrier@inria.fr.

1



such an attack always exists for any Position-Based quantum protocol, provided that the coalition
of cheaters share su�ciently many EPR pairs: no quantum position-based quantum cryptographic
protocol can display information-theoretic security.

Two general families of attacks have been considered in the literature so far, both based on
quantum teleportation. The first attack is inspired by Vaidman’s protocol for nonlocal computation
[9] and consists of the cheaters teleporting some quantum state back and forth, with the number
of exchanges depending on the success probability of the attack. If the position-based protocol
involves n qubits, the resource (number of EPR pairs) required for this type of attacks to succeed
typically scales double-exponentially with n. Another class of attacks uses port-based teleportation
[10] and requires only exponential entanglement to succeed [11]. If one could prove that such
an attack was indeed optimal, one would obtain a secure position-based protocol for all practical
purposes.

A di↵erent class of position-based verification protocols based on the nonlocal computation of
Boolean functions was introduced by Buhrman et al. in [12], for which they suggested a new type
of attacks based on the Garden-hose complexity of the Boolean function. They showed in particular
that finding an explicit Boolean function with polynomial circuit complexity (so that the honest
prover can compute it) but exponential attack complexity in the garden-hose model is at least
as di�cult as separating the classes of languages P and L, corresponding respectively to decision
problems decidable in polynomial time or logarithmic space. This result was recently extended by
Klauck and Podder who showed that explicit Boolean functions on k variables with Garden-hose
complexity ⌦(k2+✏) will be hard to obtain [13].

Concerning lower-bounds, it has been established that a constant or even linear amount of
entanglement shared by the cheaters is not su�cient to break the security of the protocol [11],
[14]. Moreover, Unruh has shown that security could be established in the quantum random oracle
model [15]. In other words, security can be obtained provided one has access to one-way functions.

Recently, Qi and Siopsis initiated the study of imperfections in quantum position-based schemes,
in particular in the presence of losses in the quantum channel between the verifiers and the prover
[16].

In this paper, we investigate the family of protocols described above, where the state |�i and
the unitary U are a general n-qubit states and unitary. We present some new attacks against such
protocols that will be e�cient as soon as the protocol is practical for the honest prover. We also
introduce a second family of protocols that seems to be immune against such attacks.

2 PBQC Protocols

For simplicity, we mainly focus on one-dimensional protocols where two verifiers V
0

and V
1

aim at
verifying the position of a prover P located between them. Moreover, without loss of generality,
we can always assume that the position P is exactly at the middle of V

0

and V
1

and that it takes
one unit of time for light to travel from V

0

(or V
1

) to P .
Roughly speaking, a general PCQB protocol consists of three distinct phases:

• the preparation phase, where V
0

and V
1

prepare a challenge for the prover. The challenge
typically involves a quantum state (usually an n-qubit state in the protocols considered in
the present paper) as well as some classical information. The challenge is always given to the
prover in a distributed fashion, one part coming from V

0

, the other part coming from V
1

.

• the execution phase, during which V
0

and V
1

send their respective share of the challenge
towards the prover P , who executes the task she is given, and returns her answer to the
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verifiers.

• the verification phase, during which the verifiers check that (i) the answer is correct, and that
(ii) they received it not more than two time units after the beginning of the protocol. This
assumes the idealized scenario where all communications are performed at the speed of light,
and local computation take negligible time. Even in that idealized scenario, it makes sense
to allow the honest prover to err a small fraction of the time. For this reason, the provers
accept the answer if it meets some tolerance threshold ⌘.

We note that some protocols investigated in the literature, for instance in ??, allow the prover to
sometimes reply that she did not received the quantum state (because of losses). In that case, one
adds a second tolerance threshold corresponding to the minimum fraction of challenges answered
by the prover. In the present paper, for simplicity, we require the prover to always give an answer
to each challenge.

We will consider two families of PBQC protocols:

1. in the first family, V
0

sends a n-qubit state and V
1

sends the classical description of a mea-
surement basis, and the prover is required to measure the state in the correct measurement
basis and to communicate the outcome to both verifiers;

2. the second family of protocols is based on interleaved group product : V
0

sends an n-qubit
state as well as a sequence of unitaries u

1

, . . . , ut, V1

sends a sequence of unitaries v
1

, . . . , vt
and the prover is supposed to measure the state in the basis corresponding to

Q
uivi.

We note that the first family of protocols has been widely discussed in the literature (for instance in
[17] or [7], but that the second family appears to be reasonably new (even if similar protocols, with
more verifiers, were considered in [7]). Let us also point out that the interleaved group product
has been considered in the communication complexity literature, for instance in a recent paper by
Gowers and Viola [18].

Before defining these protocols more formally, let us comment on some assumptions we make
here. In this paper, our main goal is to present some natural PBQC protocols and to study general
classes of attacks that can be carried out by coalitions of cheaters. While we try to be as general as
possible, we think it is sensible to make some specific choices in order to simplify the analysis. For
instance, we restrict our protocols to using qubit states, and more importantly, we consider one-
dimensional protocols with only 2 verifiers. Most of our analysis would carry through to arbitrary
qudit protocols involving many verifiers. We also decided to leave aside all the problems related
to timing in order to focus on the genuinely quantum part of the procedure. This means that we
consider that all communication (classical or quantum) is performed at the speed of light, and that
all computation is instantaneous. These are obviously unrealistic assumptions, but dealing with
more realistic ones can be done independently as the analysis we provide here (see for instances the
work of Kent [19]). The main source of imperfection in a PBQC protocol is the quantum channel
between the verifiers and the prover, which can never be assumed to be perfect. In general, the
channel is both lossy and noisy, which is why even an ideal prover cannot possibly pass the test
perfectly. On the other hand, it makes sense to assume that the classical channels are essentially
perfect (lossless and noiseless).

Following the literature, we will find it useful to describe the various protocols in terms of
distributed collaborative games, where two players, named Alice and Bob (corresponding to the
coalition of cheaters), independently receive some query from some referee, are allowed a single
round of (bipartite) communication and need to output some answer. The games considered here
all share the property that if Alice and Bob can communicate arbitrarily, then they have a trivial
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winning strategy. The main result of [8] is that it implies that one round of communication is in
fact su�cient, provided that Alice and Bob are su�ciently entangled.

Let us now formally define the two families of protocols that will be considered in this paper.

2.1 Protocol Family 1

Our first family of protocols corresponds to games denoted by G
1

(n,U , ⌘) where n refers to the
number of qubits involved in the protocol, U is a set of n-qubit unitaries, and ⌘ is the tolerance
threshold. We will also write G

1

(n, k, ⌘) when the set U is a subset of Ck, the kth level of the
Cli↵ord hierarchy (see Section 3 for a definition).

Preparation Phase:

1. The verifier V
0

chooses an n-qubit unitary operator U 2R U and an n-bit string x =
(x

1

, . . . , xn) 2R {0, 1}n. V
0

prepares | i = U |xi, where |xi =
Nn

i=1

|xii, and |0i, |1i cor-
respond to the computational basis.

2. V
0

sends x and U to V
1

through some secure authenticated classical channel.

Execution Phase:

1. V
0

sends the n qubit quantum state | i to prover P at time 0. V
1

sends the unitary U to P
at time t = 0

2. The prover P receives both | i and U at time t = 1.

3. After receiving | i and U , the honest prover P computes U †| i and measures it in com-
putational basis, obtaining some outcome string y. P then sends back y to both V

0

and
V
1

.

Verification Phase:

1. The prover P wins the game if V
0

and V
1

receive the same string y at time t = 2, and if the
Hamming distance between x and y is less than ⌘n: dH(x, y)  ⌘n.

In the literature, this first family is often considered in the single qubit case. Then it makes
sense to repeat the protocol n times in order to build some statistics. In our case, we aim at giving
a more general picture of the possible attacks working against this scheme and consider n-qubit
gates. Unfortunately, given the present experimental state-of-the-art for quantum computation,
this first family is rather unrealistic in the honest prover case for n larger than 2. This practicality
issue leads us to consider our second family of protocols, with the hope that they are much easier
to implement experimentally.

2.2 Protocol Family 2

Our second family of protocols corresponds to games G
2

(n, t, ⌘) and is based on interleaved group
product. Here, we assume single-qubit gates and t refers to the size of the product of such unitaries
that the prover will need to implement. More formally, we have:

Preparation Phase:

4



1. V
0

chooses a random bit string x 2R {0, 1}n and 2t single-qubit unitaries: u
1

, . . . ut, v1, . . . , vt
and informs V

1

of these choices thanks to a secure authenticated classical channel.

2. V
0

prepares the n-qubit state | i =
Nn

i=1

U |xii where U =
Qt

i=1

uivi.

Execution Phase:

1. At time t = 0, V
0

sends the state | i as well as the classical description of (u
1

, . . . , ut) to the
prover, and V

1

sends the classical description of (v
1

, . . . , vt) to P .

2. At time t = 1, the prover receives | i, computes U =
Qt

i=1

uivi, applies (U †)⌦n to | i and
measures the resulting state in the computational basis, obtaining some outcome y 2 {0, 1}n,
which is sent to both V

0

and V
1

.

Verification Phase:

1. The prover P wins the game if V
0

and V
1

both receive an identical string y at time t = 2, and
if dH(x, y)  ⌘n.

Interestingly for this protocol, the honest prover is only required to measure a qubit in a given
basis, which is quite practical. We note that a similar family of protocols was considered in [7], but
more verifiers were considered, which made the protocol less practical. Here we make the choice
that the same unitary U is applied to all the qubits. A variant of the protocol would be to send n
successive challenges to the prover, with n di↵erent choices for the unitary.

In order to fully define these protocols, we need to choose a measure on the set of single-qubit
unitaries, corresponding to the random choice of u

1

, . . . , ut, v1, . . . vt and u. We choose the Haar
measure on the unitary group U(2) in the following sense:

• U is chosen from the Haar measure on U(2).

• u
1

, . . . , ut, v1, . . . , vt�1

are chosen independently from the Haar measure on U(2).

• vt is computed as vt = utvt�1

ut�1

· · · v
1

u
1

U .

In fact, for a practical implementation, each of the unitary should be described with a given (finite)
level of accuracy, meaning that describing a unitary is done with say m bits. We ignore this subtlety
in the present paper.

3 Preliminaries

In this section, we fix the notation and review some technical notions needed for the rest of the
paper.

A recurring theme of this paper concerns techniques allowing distant parties to implement
some given unitary operation described in a distributed setting. We will mainly use two concepts:
standard teleportation and its link to the Cli↵ord hierarchy, as well as port-based teleportation.
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3.1 The Cli↵ord Hierarchy

The Cli↵ord Hierarchy introduced in [20] is an infinite hierarchy of sets C
1

(n) ⇢ C
2

(n) ⇢ · · · ⇢
Ck(n) · · · of n-qubit unitaries where C1

(n) = Pn corresponds to the Pauli group (on n qubits), and
the higher levels are defined recursively by:

U 2 Ck+1

(n) if and only if U�U † 2 Ck(n) for all � 2 C
1

(n).

When n is clear from context, we simply write Ck instead of Ck(n) for the kth level of the Cli↵ord
hierarchy for n-qubit gates. It should be noted that the first two levels of the hierarchy are groups,
namely the Pauli and the Cli↵ord groups, whereas none of the higher levels are groups.

The gates from C
1

and C
2

can be “easily” implemented fault tolerantly [21]. However, it is well
known that they do not form a universal set for quantum computation. One therefore requires at
least one gate from C

3

to obtain a universal set of gates. Not surprisingly, gates from C
3

or higher
levels are usually much harder to implement fault-tolerantly.

3.2 Teleportation Gates

Teleportation gates are a tool introduced by Gottesman and Chuang [20] to implement a unitary
operator U on any state provided that one can apply it to a special state. In particular, teleportation
and the ability to perform single qubit operators are su�cient to obtain (fault-tolerant) universal
quantum computation.

The main idea relies on the fact that if one uses the state (I ⌦ U)|�+i instead of |�+i =
1p
2

(|00i+ |11i) to teleport a quantum state | i then the teleported state will be of the form U | i
(up to some Pauli correction). To implement an n-qubit quantum gate U 2 C

3

, one first prepares
the state | n

U i = (I⌦U)|�+i⌦n. Let | i be an unknown state on which U has to be applied. Then
taking | i and performing a Bell basis measurement on | i and on the first register of | n

U i leaves
n qubits in the state | 

out

i = UR| i = R1U | i, where the correction R 2 C
1

is a Pauli operator
and R1 = URU † 2 C

2

. Since R1 2 C
2

, its inverse can easily be implemented, thus giving the
state U | i. Hence, using only n EPR pairs, one can implement any n-qubit quantum gate from C

3

provided that the state | n
U i can be prepared e�ciently.

If U belongs to some higher level Ck with k > 3 of the Cli↵ord hierarchy, then one can apply
the technique outlined above iteratively for k � 2 steps. Indeed, in that case, the correction R1

belongs to Ck�1

. It should be clear that higher levels of the hierarchy require more teleportation
steps and Bell measurements.

3.3 Semi-Cli↵ord Gates

Semi-Cli↵ord gates are another special type of gates with di↵erent structural properties than the
gates in Cli↵ord hierarchy. The concept of semi-Cli↵ord gates was first introduced for the single-
qubit case by D. Gross and M. Van den Nest in [22], and generalized to n-qubit states by Zeng et
al in [23].

Definition 1. An n-qubit unitary operation is called semi-Cli↵ord if it sends by conjugation at
least one maximal abelian subgroup of Pn to another maximal abelian subgroup of Pn.

In particular, if U is an n-qubit semi-Cli↵ord operation, then there must exist at least one
maximal abelian subgroup G of Pn, such that UGU † is another maximal abelian subgroup of Pn.
While the general structure of the semi-Cli↵ord gates is not yet completely understood for arbitrary
n, we have a characterization for n = 1, 2 and a partial characterization for n = 3.
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Theorem 2 (from [23]). The gates in Ck(1), Ck(2) are semi-Cli↵ord for all k. For n = 3, all the
gates in C

3

(3) are semi-Cli↵ord.

In our work, semi-Cli↵ord gates will be of interest as they allow the cheaters to perform more
e�cient attack strategies for the second family of protocols.

3.4 Port-based teleportation

Port-based teleportation is a specific teleportation scheme introduced in [10], that allows Alice to
teleport an arbitrary quantum state to Bob, using many EPR pairs, called ports. After Alice’s
measurement on her state and her half of the EPR pairs, the state is teleported (approximately) to
one of Bob’s port, known to Alice. Alice simply sends this classical information to Bob, who only
needs to trace out the other ports to recover Alice’s state. The main feature of this teleportation
scheme is that apart from tracing out some registers, Bob needs not apply any correction to the
state. The fidelity Fp(| ini, | outi) between Alice’s initial state and Bob’s final state using port-
based teleportation depends on both the number N of EPR pairs consumed in the scheme and the
dimension d of Alice’s state. The following lower-bound was established in [24].

Lemma 3 (from [24]).

Fp(| ini, | outi) � 1� d2

N
. (1)

3.5 Quantum cloning

While it is well-known that cloning an unknown quantum state exactly is forbidden by the unitary
of quantum theory, approximate quantum cloning is not ruled out (see [25] and [26] for reviews on
quantum cloning). In particular, N ! M quantum cloning is the task where one receives N copies
of an unknown state and should prepare M > N copies of this state, as close as possible to the
input state.

Werner [27] and Keyl and Werner [28] established that the fidelity of optimal N ! M universal
cloning machines for d-dimensional states is given by:

FN!M (d) =
M(N + 1) + (d� 1)N

M(N + d)
. (2)

For our purpose, we will be interested in the case where d = 2, N = 1 and M ! 1 which gives

F
1!1(2) =

2

3
. (3)

4 General attacks strategies against PBQC protocols

As was proved in [8], there always exists a working attack strategy against any PBQC protocol
that allows a coalition of adversaries to perfectly impersonate the honest prover. In the case of
the one-dimensional protocols considered in this paper, such a coalition consists without loss of
generality of 2 players, Alice (A) and Bob (B), with Alice lying on the line between V

0

and P , and
Bob lying between V

1

and P .
The attack strategies we will consider have the following structure:

1. Alice and Bob initially share a (possibly entangled) initial bipartite state ⇢AB of dimension
to be specified later.
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2. Alice intercepts the communication from V
0

, namely a quantum register ⇢C (where C stands
for challenge), as well as some classical information.

3. Bob intercepts the classical communication from V
1

.

4. Depending on the classical information they received, Alice and Bob perform respectively a
quantum measurement on their respective registers, AC and B.

5. They forward all the classical information as well as the outcomes of the measurement to
their partner.

6. Finally, upon receiving this information, they prepare and send their response to the verifiers.

The main question of interest is to decide how the dimension of ⇢AB, and more particularly the
entanglement of this state, scales with the parameters of the PBQC protocol.

This scenario allows us to see the cheating procedure as a distributed task, or game, where Alice
and Bob are asked questions (possibly consisting of a quantum state), are allowed a single round
of communication and are required to output some specific answer. They win the game if they fool
the verifiers.

Let us interpret our two families of PBQC protocols in these terms.

Family 1

• Input: | i = U |xi for Alice, U 2 U for Bob

• Output: a 2 {0, 1}n for Alice, b 2 {0, 1}n for Bob

• Winning condition: a = b and dH(a, x)  ⌘n

Family 2

• Input: | i =
Nn

i=1

⇣Qt
j=1

ujvj |xii
⌘
and (u

1

, . . . , ut) for Alice, (v1, . . . , vt) for Bob

• Output: a 2 {0, 1}n for Alice, b 2 {0, 1}n for Bob

• Winning condition: a = b and dH(a, x)  ⌘n

We now list a few questions of interest. In the perfect setting (⌘ = 1), how many EPR pairs
do Alice and Bob need to share to carry out a successful attack with high probability? One of
the main open questions of the field is to find an explicit protocol that requires an exponential
number of EPR pairs to break. At the other hand of the spectrum, what is the maximum value of
⌘ for which non entangled cheaters can win the game with high probability? A typical attack for
non entangled cheaters will typically consist in Alice measuring the state in a random basis and
forwarding her measurement outcome to Bob. It would also be interesting to understand the level
of security when the cheaters share polynomially many EPR pairs.

5 Attacks for ⌘ = 1 based on the Cli↵ord hierarchy

In this section, we first study attack techniques based on the Cli↵ord hierarchy that can be applied
by cheaters against the first family of protocols G

1

(n,U , 1) in the case where the value of the
tolerance threshold ⌘ is set to 1.

In particular, we will give explicit attacks which are e�cient in the following relevant cases:
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η

η0

1

0 poly(n,k) exp(n,k) #  EPR pairs

Insecure

Secure?

Figure 1: General picture for the security of a PBQC protocol: there exists some value ⌘
0

such
that even non-entangled cheaters can win a game for ⌘  ⌘

0

. On the other hand, if ⌘ is set to 1,
then an exponential number of EPR pairs makes the protocol insecure. The security in the regime
where the cheaters share polynomially many EPR pairs is usually much less understood.

• if U ✓ Ck(n), that is if the unitaries all belong to some low level of the Cli↵ord hierarchy,

• if the unitaries in U can all be implemented with a quantum circuit with a fixed layout.

We note that these two cases correspond to protocols that appear to be practical for a honest
prover. Indeed, gates in a low level of the Cli↵ord Hierarchy are much easier to implement than
arbitrary gates. Moreover, if the quantum states are photonic states, and the honest prover uses
integrated photonics to implement the unitaries in U , a fairly reasonable choice in practice, then
it makes sense to fix some layout, that is an optical circuit consisting of single or 2-qubit gates for
instance, and to obtain the family U by changing the value of the single and 2-qubit gates.

In both cases, our results show that there exists an e�cient attack strategy for the coalition of
cheaters.

5.1 A general attack for U = Ck

Let us first define the Cli↵ord complexity of a family U of unitaries.

Definition 4. Let U be a set of n-qubit unitaries. We define the Cli↵ord complexity of the set U
denoted by Cli↵Compl(U) to be the minimum number of EPR pairs that Alice and Bob must share
to perfectly win the game G

1

(n,U , 1).

It is easy to see that if the unitary U is a Pauli matrix, then Alice and Bob can win the game
G(n, 1, 1) without sharing any entanglement because | i is also a basis state |yi. The two strings x
and y coincide on the qubits for which U is the identity or a Z Pauli matrix, and di↵er for the other
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qubits. Therefore, Alice simply needs to measure | i in the computational basis and to forward
her results to Bob, who can recover the correct string x using his knowledge of U . This shows that

Cli↵Compl(C
1

(n)) = 0.

If the unitary U belongs to the Cli↵ord group C
2

, then Alice and Bob can again win the game
perfectly if they share n EPR pairs. The idea is for Alice to teleport the state | i to Bob using the
n EPR pairs. Bob obtains the state �| i where � 2 C

1

is a Pauli correction. Applying the unitary
U † to his state, Bob obtains

U †�UU †| i = U †�U |xi,

where U †�U 2 C
2

. This means that Bob simply needs to measure his state in the computational
basis, and forward his result to Alice. Once they know both the value of � and the result of the
measurement, both Alice and Bob are able to recover the correct value of the string x and they
win the game. This proves that

Cli↵Compl(C
2

(n))  n.

If the unitary U to be implemented belongs to the kth level of the Cli↵ord hierarchy, then Alice
and Bob can apply an iterative procedure which is described in Algorithm 1.

Lemma 5. If Alice and Bob apply Algorithm 1, then they win the game.

Proof. To prove the correctness of the algorithm, we need to show that Uj 2 Ck�j and that Bob can

perform U †
j since he knows the value of Uj . The first point is shown by recurrence: U

0

= U 2 Ck

and if Uj 2 Ck�j , then Uj+1

= �Bj+1U
†
jAj+1

Uj 2 Ck�j�1

. Moreover, the value of Uj is a function of

Uj�1

,�Aj and Bj . For the quantum channel labeled by �Aj , Bob is therefore able to apply U †
j .

The existence of the attack strategy described in Algorithm 1 allows us to obtain the following
upper bound for the Cli↵ord complexity of the set Ck(n).

Theorem 6.

Cli↵Compl(Ck(n))  4n 4n(k�2). (4)

Proof. The loop at Step 3 in Algorithm 1 can be viewed as a branching tree with depth k�2. This
tree is regular with each internal node having 4n children (corresponding to the 4n possible values
for Alice’s Bell measurement result). Each layer of the tree corresponds to a round trip between
Alice and Bob, that is 2n EPR pairs. Computing the complexity of the attack therefore amounts
at counting the number of branches in the tree. For a tree of depth k�2, the number of branches isPk�3

j=0

4jn. Moreover, the last step of the protocol consists in a quantum teleportation of n⇥4n(k�2)

qubits from Alice to Bob. In total, the number of EPR pairs used in the protocols is therefore

2n
k�2X

j=0

4jn + n4n(k�2)  4n4n(k�2).
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Input: n, k known to everyone, | i = U |xi received by Alice, U = U
0

2 Ck

received by Bob
Output: x 2 {0, 1}n

1 Alice teleports the state | i to B using n EPR pairs and obtains a string
describing �A1 2 Pn. Bob obtains the state �A1 | i = �A1U |xi.

2 Bob applies U † to his state and teleports the outcome U †�A1U |xi to Alice,
obtaining some classical description of �B1 2 Pn. Alice obtains the state U

1

|xi
where U

1

= �B1U
†�A1U 2 Ck�1

.

for j = 1 to k � 3 do

3 Alice knows the value of �A1 , . . . ,�Aj (among the 4jn possibilities). Alice and

Bob share 4n ⇥ (n4(j�1)n)) EPR pairs devoted to round j, corresponding to 4n

sets of n⇥ 4(j�1)n EPR pairs, one set for each possible value of �Aj . Alice

teleports back each of the 4(j�1)n n-qubit states (of the form Uj |xi for some
given Uj) she received from Bob using the “teleportation channel” indexed by
�Aj . In that teleportation channel, Bob obtains the state �Aj+1Uj |xi, applies
U †
j to that state, before teleporting it back to Alice in the corresponding

teleportation channel. Alice receives Uj+1

|xi with
Uj+1

= �Bj+1U
†
jAj+1

Uj 2 Ck�j�1

.

end

4 Alice uses a final round of teleportation for the 4(k�2)n n-qubit states, and
obtains a classical description of �Ak�1 .

5 Alice sends the classical value of �A1 , . . . ,�Ak�1 to Bob.

6 Bob applies U †
k�1

to each n-qubit state, measures in the computational basis, and
forwards the classical output, as well as the value of �B1 , . . . ,�Ak�2 to Alice.

7 Both Alice and Bob compute the value of x.

Algorithm 1: Cheating strategy based on the Cli↵ord hierarchy
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4

(k�2)n
leaf nodes

U

1

|xi

k � 1 depth U

2

|xi

Uk�2

| i

U

0

|xi
Measurement outcome �A1

Measurement outcome �A2

branch corresponding to �A1

branch corresponding to �A2

Figure 2: Pictorial view of Step 3 of Algorithm 1: Each level of the tree indicates one round of the
loop. The root node contains the state U

0

|xi = U |xi and one of the nodes on the jth layer contains
the state Uj |xi (indicated in black on the figure). The path in dashed line is the correct one,
and each branch of this path corresponds to the 2n EPR pairs labeled by measurement outcomes
�A1 , . . . ,�Ak�3 .

5.2 Attacks when U correspond to quantum circuits with a fixed layout

The attack corresponding to Algorithm 1 is general and works for any n-qubit gate in some given
level of the Cli↵ord hierarchy. In the context of PBQC protocols, however, the interesting set of
gates U from which the unitary to be implemented is chosen, is often more restricted. Indeed, if
the protocol is to be practical, then a honest prover should be able to implement the unitaries
reasonably e�ciently. For this reason, it is interesting to consider unitaries described by quantum
circuits.

In a practical scenario, where the quantum states given to Alice are photonic qubits, it makes
sense to consider photonic implementations for the quantum circuit, and therefore to consider
unitaries with a fixed layout for the quantum circuit, and adjustable single and two-qubit gates.
This is typically the case for experimental implementations based on integrated photonics [29].

For this reason, the set U of unitaries considered in the first family of protocols could be
described by a fixed layout, and a specific unitary U 2 U is then described by giving the value of
each single or two-qubit gate in the layout. For a quantum circuit based on linear optics, the layout
L corresponds to the position of the phase-shifters and beamsplitters, and the unitary is given by
the specific values of the phase-shifts and transmission of the beamsplitters.

We will be interested in the complexity of attacks for such schemes as a function of the depth
and width of such quantum circuits.

Definition 7. Let L be the layout for an n-qubit quantum circuit, consisting of adjustable ele-
mentary gates. The set UL of n-qubit unitaries corresponds to the set of unitaries which can be
implemented with a quantum circuit with layout L.

12



Lemma 8 (Parallel circuits). Let L
1

,L
2

be two layouts for quantum circuits. Then

Cli↵Compl(UL1 ||UL2)  Cli↵Compl(UL1) + Cli↵Compl(UL2), (5)

where L
1

||L
2

is the layout corresponding to putting L
1

and L
2

in parallel.

We note that for the quantum unitary corresponding to two circuits in parallel is simply the
tensor product of the unitaries: UL1||L2

= UL1 ⌦ UL2 and therefore

UL1||L2
⇢ UL1 ⌦ UL2 .

Proof. Consider any gate U
1

⌦U
2

2 UL1||L2
. Since both Alice and Bob know the decomposition U

1

⌦
U
2

, they can implement the optimal attack for U
1

and for U
2

independently, since these unitaries act
on distinct sets of qubits. The complexity of the overall attack is simply the sum of the complexities
of implementing U

1

and U
2

, which is upper bounded by Cli↵Compl(UL1) + Cli↵Compl(UL2).

Lemma 9 (Concatenated circuits). Let L
1

,L
2

be two layouts for quantum circuits. Then

Cli↵Compl(UL1L2)  Cli↵Compl(UL1)Cli↵Compl(UL2), (6)

where L
1

L
2

is the layout corresponding to concatenating the layouts L
1

and L
2

.

Proof. The strategy consists in first applying the unitary U
1

2 UL1 . Then, at the last round, instead
of measuring the state, Bob continues the teleportation protocol in order to implement U

2

2 UL2 .
There are at most Cli↵Compl(UL1) leaves in the tree corresponding to the implementation of U

1

, and
it is su�cient to apply the protocol to each of these leaves in order to implement to concatenation
of U

1

and U
2

. Therefore, Cli↵Compl(UL1)Cli↵Compl(UL2) EPR pairs are su�cient to implement
the total unitary.

From Lemma 8 and 9, it is possible to compute an upper bound for the Cli↵ord complexity of
any layout, as a function of its depth and size.

Theorem 10. Let L be the layout of a quantum circuit acting on n-qubit state of depth d and
consisting of at most r-qubit gates in Ck. Then

Cli↵Att(UL)  4rd(k�2) ⇥ (4rn)d. (7)

Proof. The layout L can be decomposed into d layers: L = L
1

L
2

· · · Ld, each layer consisting itself
of at most n parallel gates of size at most r. Lemma 8 together with the result of Theorem 6
applied to gates acting on ri qubits gives Cli↵Compl(ULi) 

P
j 4rj4

rj(k�2) with
P

j rj = n. Using

that rj  r gives Cli↵Compl(ULi)  4rn4r(k�2). Combining this with the result of Lemma 9 finally
gives

Cli↵Compl(UL) 
dY

i=1

Cli↵Compl(ULi)  4rd(k�2) ⇥ (4rn)d.

This result shows that the complexity for winning the game G
1

(n,U , 1) is only polynomial in
n if the layout of the quantum circuit has constant depth, and if individual gates act on a finite
number of qubits while being in some low level of the Cli↵ord hierarchy.

This establishes an inherent limitation of the first family of protocols for PBQC: if the protocol
can be implemented realistically by a honest prover (i.e. either the unitary lies in a low level of
the Cli↵ord hierarchy, or the quantum circuit to implement it has low depth), then there exists an
e�cient attack strategy.
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6 General attacks against the second family of PBQC protocols

Our second family of protocols is by construction immune to the attacks mentioned above. In
particular, all the individual gates are chosen from the Haar measure and therefore do not belong
to some low level of the Cli↵ord hierarchy. Moreover, the product structure enforces a large depth
(of order t which can be taken very large in practice) for the quantum circuit. Note that in the
proposal of [7], neither of these conditions was enforced because t corresponded to the number of
verifiers (which should remain quite small for practical protocols) and all the gates belong to some
low level of the Cli↵ord hierarchy.

There exist, however, some attacks working in the regime ⌘ < 1, which we investigate now. The
first strategy uses port-based teleportation over 2t rounds. The second strategy we will consider
relies on the Solovay-Kitaev theorem for approximating arbitrary gates with gates in a low level of
the Cli↵ord hierarchy, for which the attack of Algorithm 1 can be applied. Both attacks lead to
the same complexity: they require 2O(t log(t/✏)) EPR pairs to achieve ⌘ = 1� ✏.

We end this section with a discussion of possible attacks for non-entangled cheaters, which
works if ⌘  ⌘

0

, with ⌘
0

= 2/3.

6.1 Port-based teleportation

The attack proceeds as follows:

• Alice applies the unitary u†
1

to her qubits and uses m
1

EPR pairs to teleport each qubit to
Bob. This consumes a total of M

1

= m
1

n EPR pairs.

• Bob applies the unitary v†
1

to all of his qubits, and uses m
2

EPR pairs to teleport each one
back to Alice. This consumes a total of M

2

= m2M
1

EPR pairs.

• This process is repeated for 2t rounds, after which the unitary U † has been applied to all the
qubits. At each step, Alice or Bob uses mi EPR pairs to perform the port-based teleportation
of a single qubit.

• At the last step, Bob measures each qubit in the computational basis, and both he and Alice
exchange their measurement results.

There are two quantities of interest to analyze the attacks: the total number of EPR pairs used
by Alice and Bob, and the fidelity of the final state. Recall indeed that port-based teleportation is
not perfect, and that the teleported state is only an approximation of the input state.

The number M of EPR pairs is given by:

M = M
1

+M
2

+ · · ·+M
2t�1

(8)

= n

"
m

1

+m
1

m
2

+ · · ·+
2t�1Y

i=1

mi

#
. (9)

The fidelity F between the qubit after the 2t� 1 rounds of teleportation and the initial qubit is:

F �
2t�1Y

i=1

✓
1� 4

mi

◆
. (10)
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Choosing the slightly suboptimal strategy mi = m gives: M = nmm2t�1�1

m�1

⇡ nm2t�1 and

F = (1� 4/m)2t�1, that is:

M ⇡ n

✓
8t

✏

◆
2t�1

, (11)

where ✏ = 1� F .
This establishes the following result.

Theorem 11. Port-based teleportation provides an attack strategy against G
2

(n, t, ⌘) that requires
exp(O(t log(t/✏))) EPR pairs, where ⌘ = 1� ✏.

6.2 Attack based on the Solovay-Kitaev approximation

We now consider a di↵erent attack strategy based on the Solovay-Kitaev approximation, which
guarantees that any single-qubit unitary can be approximated with accuracy ✏ by a sequence of
unitaries taken from some fixed universal set of gates.

Theorem 12 (Solovay-Kitaev [30]). If G ✓ SU(d) is a universal family of gates (where SU(d) is
the group of unitary operators in a d-dimensional Hilbert space), G is closed under inverse and G
generates a dense subset of SU(d), then for any U 2 SU(d), ✏ > 0, there exist g

1

, g
2

, . . . , gl 2 G
such that kU � Ug1Ug2 . . . Uglk  ✏ and l = O(logc

�
1

✏

�
), where c < 3 is a positive constant.

Let us fix G = {H,T} where H is the Hadamard operator and T is the ⇡
8

qubit gate, and
note that this set lies in the third level C

3

of the Cli↵ord hierarchy. The Solovay-Kitaev theorem
guarantees that for each unitary Ui used in the game G

2

(n, t, ⌘), there exists another unitary U 0
i ,

obtained as a product of exactly l gates from {H,T,
2

} (where the identity is chosen so that the
size l can be chosen to be independent the unitary Ui). By decomposing their respective gates Ui

and Vi into products of gates in C
3

, Alice and Bob are able to implement the attack strategy of
Algorithm 1.

Theorem 13. There exists an attack strategy for G
2

(n, t, 1� ✏) requiring 28t log
c( 2t

✏ )n EPR pairs,
where c < 3.

Proof. According to Solovay-Kitaev theorem 12, one can approximate each unitary Ui used in pro-
tocol family 2 by another unitary U 0

i such that kUi�U 0
ik  ✏

2t , using a sequence of l = O(logc(2t/✏))
gates. Overall, the approximation quality is given by

�����

tY

i=1

UiVi �
tY

i=1

U 0
iV

0
i

�����  ✏.

The circuit to implement the gate
Qt

i=1

U 0
iV

0
i has depth 2tl and uses only gates from C

2

or C
3

.
According to Theorem 10, the number M of EPR pairs needed to perform the attack is

M = 28tl = 28t log
c( 2t

✏ ). (12)

Performing this attack for each of the n qubits proves the theorem.

This attack can in fact be improved by noting that the gates in G = {H,T} are semi-Cli↵ord.
Recall that for a semi-Cli↵ord unitary U , there are 2n operators � 2 Pn such that U�U † 2 Pn. This
implies that for such gates, the tree described in Algorithm 1 can be take to have degree 4n � 2n.
For n = 1, as is the case with the second family of protocols, this means that the complexity of
approximating

Qt
i=1

UiVi can be reduced to 24lt instead of 28lt, leading to an overall quadratic
improvement in the complexity of the attack.
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6.3 Attacks for a non-entangled coalition of cheaters: value of ⌘
0

An important remark, which was already made in [16], is that non-entangled cheaters can always
win a game G

1

(n,U , ⌘) or G
2

(n, t, ⌘) provided that the value of ⌘ is low enough. Let us denote by
⌘
0

the maximum value of ⌘ for a game that non-entangled cheaters can win with high probability.
Clearly ⌘ = 1/2 is always achievable by a simple random guessing strategy.

In the case of the second family of protocols, the cheaters can do slightly better if Alice measures
each incoming qubit in a random basis. More precisely, Alice will measure each qubit | ii of the
incoming state in a random basis, obtain some measurement result corresponding to a qubit state
| ̃ii and communicate the classical description of  ̃i to Bob. When Alice and Bob learn the value of
the unitary U , they can simply consider the state U †| ̃ii and output 0 or 1, depending on whether
U †| ̃ii is closer to |0i or to |1i. This strategy gives them the correct bit with probability 2/3. This
can be seen for instance by noticing that the random basis measurement corresponds to symmetric
1 ! 1 cloning, a process that works with fidelity 2/3 according to Eq. 2. Overall, this strategy
leads to an expected fraction of correct bits equal to 2/3, which means that ⌘

0

= 2/3 for the second
family of protocols.

7 Loss-tolerant protocols

In general, the trivial cloning strategies allow the cheaters to win a constant fraction of the n
“rounds” of a game. This is problematic because it seems that a honest prover cannot do much
better as soon as the quantum channel from the verifiers is imperfect, either lossy or noisy. As a
consequence, it would appear that PBQC is not robust against losses or noise (see [16] for possible
trade-o↵s between loss and noise). Fortunately, this conclusion is a little bit too pessimistic.

The protocols of the second family can indeed be straightforwardly modified to be made loss-
tolerant. The crucial point to note here is that these protocols appear to remain secure even if the
quantum state is distributed in advance compared to the classical information required to decide
in which basis to measure the state. From this observation, we propose the following modification
of these protocols:

In addition to the verifiers, there is a central “bank” of quantum states available to the prover.
This bank (whose role can be played by the verifiers) distributes quantum states, along with some
identification number, to interested parties. The value of the states is not revealed to the client
but the verifiers have access to a complete listing of pairs: (state ID/ state value). When a prover
wants to play a PBQC game, she should therefore obtain a quantum state from the bank, put it in
a quantum memory, and then inform the verifiers of the state ID. Then, the verifiers can apply the
usual protocol, with the exception that the state | i does not need to be distributed since the game
is played with the state the prover obtained from the bank.

It seems to us that these modified protocols are as secure as the original ones. More precisely,
we could not think of any attack working against the modified version that would not also work
against the original version.

The advantage of this modified version is that the quantum channel between the verifiers and
the prover is replaced by the quantum memory of the prover. This can be quite advantageous in
a scenario where the physical distance between the verifiers and the prover is large, meaning that
fiber optics communication would lead to high losses, provided that the prover has access to a good
quantum memory.
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8 Discussion & Conclusion

In this paper we have studied two families of position based quantum cryptography protocols and
considered possible attack strategies. In particular, we have established a connection between sev-
eral well studied quantum information processing tasks and position based quantum cryptography.
It was previously known that there exist some e�cient attack when the verifiers choose the challenge
unitary from Cli↵ord group. Here, we showed that this remains true if the unitaries lie in a low
level of the Cli↵ord hierarchy. This actually connects notions relevant in fault tolerant quantum
computing with attack complexity of position based quantum cryptography.

We have further proved that for the first family of protocols, practicality in the honest case
leads to some security weaknesses in terms of the existence of e�cient attack strategies.

Finally, we have introduced a new family of position-based quantum verification protocols that
appear to be immune to these attacks, and that display the further advantage of being loss-tolerant
in a scenario where the quantum state is distributed independently from the classical challenge.
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