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The round-robin differential phase-shift (RRDPS) quantum key distribution (QKD) protocol is a
QKD protocol which does not require monitoring of disturbance unlike conventional QKD protocols.
In the original proposal, security was proved provided that the receiver can use number-resolving
photon detectors. It ensures that the sifted key is generated from the events where a single photon is
received by the receiver. Here we consider a passive configuration of RRDPS protocol with threshold
detectors and prove its security without estimating the frequency of multiphoton received events.

I. INTRODUCTION

Quantum cryptography [1–11] is one of the most
promising applications of quantum information technol-
ogy. The reason why quantum cryptography can be se-
cure is usually understood in terms of the uncertainty
principle [12]. If an eavesdropper Eve tries to measure
the signal from a sender Alice, it must cause disturbance
on a physical quantity which is complementary to the one
carrying the transmitted information. It means that Al-
ice and a receiver Bob can bound the information leaked
to Eve from the estimated amount of disturbance. Once
they bound it, they can use the privacy amplification to
obtain a secure final key.

Recently, round-robin differential phase-shift
(RRDPS) quantum key distribution (QKD) proto-
col was proposed [13]. The most interesting feature
of this protocol is that it does not need monitoring of
disturbance to guarantee the security. In other words,
we can guarantee the security without any knowledge
about the intervention during the transmission of the
signal. In its security proof, one of the main building
block is the statistical property of a pair of indices
announced by Bob. Since this property is based on the
condition that Bob receives one photon in an L-pulse
train, he needs to use the photon-number-resolving
detector to select valid events.

In actual implementation of QKD protocols, it is
preferable to use threshold detectors which cannot dis-
criminate the arrival of a single photon from that of two
or more photons. One way to adapt the RRDPS protocol
to the use of threshold detectors is to add a procedure
for estimating how often multiphotons have arrived at
the receiver. Since this added procedure can be regarded
as a monitoring of the change in the optical signal, it may
amount to forfeiting the main feature of the RRDPS pro-
tocol. We are thus led to a question of whether the pro-
tocol can be made secure without an added procedure
of monitoring the disturbance. In this paper, we ana-
lyze an implementation of RRDPS with a passive delay
change and show that the security is achieved without
monitoring disturbance, even with the use of threshold
detectors.

FIG. 1. An implementation of a protocol using Mach Zender
interferometer (MZI) array. Alice’s laser emits pulses with
an interval ∆τ . A phase shift {0, π} is applied to each pulse
randomly. Bob uses a multiway beamsplitter (MBS) which
splits pulses evenly and make them superposed by L−1 MZIs
made from two half beamsplitters (BS) and two photon de-
tector (PD). The r-delay MZI superposes two pulses whose
time interval is r∆τ .

II. PROTOCOL

We consider a setup illustrated in Fig. 1. Alice uses a
laser which repeatedly emits pulses at the same interval of
time, ∆τ , and a phase shifter which applies phase shift 0
or π to each pulse. Bob splits incoming pulses evenly into
L − 1 paths by a multiway beamsplitter (MBS). These
paths are connected to r-delay Mach-Zender interferom-
eters (MZI), where r varies from 1 to L− 1. The r-delay
MZI superposes two pulses whose time interval is r∆τ
and two photon detectors (PDs) measure whether the
relative phase between these two pulses is 0 or π. We
suppose that the photon detectors are threshold detec-
tors which discriminate whether the number of photons
in a pulse is 0 or not. If we use an optical switch in-
stead of MBS and PDs can discriminate the number of
photons, this setup is identical to the original one. This
change is irrelevant if the number of photons received at
Bob’s side is one.

With this setup, Alice and Bob share their key as fol-
lows. We regard the pulses emitted from Alice as a rep-
etition of L-pulse trains. Bob records the timings when
each detector detects photons. He only records a detec-
tion from superposition of two pulses in the same L-pulse
train. We use indices i ∈ {1, · · · , L} to label the L pulses
in a train. When we focus on an interference of a pair
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{i, j}, there are four types of output: no detection, detec-
tion at one detector (0 or π), detection at both detectors.
We call three types other than “no detection” as a detec-
tion of a pair {i, j}. When there are multiple detections
of pairs in one L-pulse train, Bob randomly chooses a de-
tected pair. If an output of a chosen pair is a detection at
one detector, Bob sets his bit depending on which of the
detectors has reported the detection. His bit becomes 0
and 1 if the relative phase of a pair is 0 and π, respec-
tively. If both detectors are activated, he chooses 0 or
1 randomly. He announces the indices {i, j} of the cho-
sen pair in a L-pulse train over a public channel. Since
Alice knows the phase of each pulse, she can calculate
the relative phase between the ith and jth pulses. If the
experimental setups are ideal and the quantum channel
does not disturb relative phases, this scheme allows Alice
and Bob to share the same random bits.

We assume that the efficiency does not depend on the
paths and PDs. This allows us to assume that Bob’s ap-
paratus has unit efficiency and an appropriate attenuator
is placed in front of Bob’s apparatus. We consider this
attenuator as a part of the quantum channel. We also
assume that dead time and dark count rate of PDs are
negligible for simplicity.

III. SECURITY

The security analysis is almost the same as that in [13].
First, we focus on Alice’s side. Instead of using the laser,
she could in principle prepare L qubits and L pulses in an

entangled state 2−L/2
⊗L

k=1

∑
sk=0,1 |sk⟩k (−1)skn̂k |Ψ⟩,

where {|0⟩k , |1⟩k} is the Z-basis states of the kth qubit
and n̂k is the number operator of the kth pulse. If
she measures each qubit on Z-basis, we obtain the
same state as in the actual setting. We denote the
results of Z-basis measurements as s1, · · · , sL. Alice’s
sifted key bit is obtained by performing exclusive OR
operation on si and sj where {i, j} are the indices
announced by Bob. This bit is also obtained if she
measures the target bit on Z-basis after performing
controlled-NOT (CNOT) operations on the qubit
pair {i, j}. We call {|0X⟩k , |1X⟩k} as X-basis of the

kth qubit, where |tX⟩ = (|0⟩+ (−1)t |1⟩) /
√
2, t =

0, 1. We can rewrite the Alice’s state as

2−L
⊗L

k=1

∑
tk=0,1 |tXk ⟩k

(
1 + (−1)tk(−1)n̂k

)
|Ψ⟩ . The

operators (1 + (−1)n̂k)/2 and (1 − (−1)n̂k)/2 are pro-
jections onto states whose number of photons at the
kth pulse is even and odd, respectively. A pulse with
an odd number of photons includes at least one photon.
Using the technique in [14], we have only to consider the
case where the number of photons in L-pulse train is no
larger than a threshold value νth. Under this condition,
the number of qubits found in |1X⟩ states is no larger
than νth if Alice measures her qubits with X-basis.

Before analyzing the setup in Fig. 1, we review the crux
of the security proof in [13]. It is based on the existence

of an equivalent protocol where Bob can tell Alice addi-
tional information about which index of the pair {i, j}
is the first one. In other words, Bob can tell Alice an
ordered pair (i, j). We denote the probability of obtain-
ing an unordered pair {i, j} and an ordered pair (i, j)
as p{i,j} and p(i,j), respectively. In order to keep Eve’s
knowledge on the Alice’s sifted key bit exactly the same
as in the actual protocol, we require p{i,j} = p(i,j)+p(j,i).
From explicit construction of the equivalent protocol, the
proof shows that p(i,j) satisfies

p(j|i) =
p(i,j)∑
j′ p(i,j′)

≤ p̃ =
1

L− 1
(1)

for all i, j. This inequality stems from the condition that
only one photon reaches Bob’s side. Alice’s bit is ob-
tained from Z-basis measurement on the target qubit j
after the CNOT operation on the pair (i, j). Accord-
ing to [15], we can prove the security if we know how
we can predict the result of X-basis measurement on the
target qubit. Note that X-basis measurement on a target
qubit commutes with the CNOT operation. Among L−1
qubits except the control qubit, the number of those in
state |1X⟩ is no larger than νth. Thus, the probability of
obtaining the |1X⟩ state at the target qubit is no larger
than p̃νth. The asymptotic secure key rateG from this re-

sult is G = Q
(
1− h(ebit)− esrc

Q −
(
1− esrc

Q

)
h (p̃νth)

)
,

where Q is sifted key rate, ebit is bit error rate, and esrc
is probability that the number of photons emitted in a
L-pulse train is larger than νth.

Since use of the threshold detectors is assumed in this
paper, we cannot use the same equivalent protocol as in
[13] and Eq. (1). Instead, we will show the following
proposition.

Probosition 1 For Bob’s apparatus in the actual setup
in Fig. 1, there exists an alternative procedure of pro-
ducing an unordered pair {i, j} through the production
of ordered pair (i, j), satisfying the following properties
(a) and (b) regardless of the state received by Bob. Let
p(i,j) is the probability of the ordered pair produced in
the alternative protocol. (a) p{i,j} = p(i,j) + p(j,i), where
p{i,j} is the probability of unordered pair in the actual

protocol. (b) p(j|i) =
p(i,j)∑
j′ p(i,j′)

≤ p̃ = 2
L , for all

i, j ∈ {1, · · · , L}, i ̸= j.

From this result and the above argument, we obtain an
asymptotic secure key rate G with p̃ = 2/L, namely

G = Q

(
1− h(ebit)−

esrc
Q

−
(
1− esrc

Q

)
h

(
2νth
L

))
.

(2)

IV. PROPOSITION 1

Although the proof of Proposition 1 is the main body
of this work, it is rather technical and is found in the sup-
plementary material. Instead, we show what properties
are essential in proving it.
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In the actual experiment, Bob announces an unordered
pair {i, j} by using the interferometers in Fig. 1. Inter-
ferences occur only at the second beamsplitters of the in-
terferometers and these interferences have nothing to do
with which pair {i, j} is eventually announced by Bob.
Even if we remove the second beam splitters, p{i,j} does
not change. In other words, p{i,j} depends only on how
each photon chooses its path probabilistically through
the array of beamsplitters, just like a classical particle.

When an unordered pair {i, j} is detected and chosen
over other detected pairs, there are three cases. (i) The
photons responsible for this detection comes only from
ith pulse. (ii) The photons responsible for this detection
comes only from jth pulse. (iii) The photons responsi-
ble for this detection comes from both ith pulse and jth
pulse. For the case (i), this detection is counted as (i, j).
For the case (ii), it is counted as (j, i). For the case (iii),
we randomly choose (i, j) or (j, i). From these rules, Bob
can determine a pair (i, j) such that the distribution of
{i, j} is identical to the actual protocol.

If there is one photon in an L-pulse train at Bob’s
side, it is shown in the original proposal that p(j|i) is
bounded by 1/(L − 1). The bound in Proposition 1 is
almost twice as large as the original one. This factor can
be understood from the following example. We assume
that Eve sends a pulse train where the first pulse (i = 1)
contains no photon, the second pulse (i = 2) contains one
photon and the other pulses contain a large number of
photons. Consider the case where L is large. For (2, 1)
to be chosen, the photon in the second pulse must choose
the delayed arm of the 1-bit delay interferometer, which
occurs with probabiltiy ∼ 1/(2L). It must further beats
the other detected pairs. Since almost all the L(L− 1)/2
pairs are detected, this probability is ∼ 2/L2. Since the
first pulse has no photon, the case (iii) does not happen.
Hence we have p(2,1) ∼ 1/L3. For (2, j)(j ̸= 1, 2), the
argument is almost the same except that case (iii) surely
occurs. Hence we have p(2,j) ∼ 1/(2L3). Since it means

p(1|2) ∼ 2
L , it is an almost optimal attack for Eve.

V. CONCLUSION

We have proven the security of the RRDPS protocol
with the measurement setup in Fig. 1 with threshold de-
tectors. The only difference between analysis in this pa-
per and that in the original one [13] is how to construct a
equivalent protocol to produce an ordered pair (i, j). In
[13], the unbiased distribution is derived from the con-
dition that there is one photon in an L-pulse train. Al-
though we remove this condition in this paper, we make
use of the fact that each photon is distributed to each
MZI with an equal probability in order to guarantee al-
most unbiased distribution of a pair. In return for the
omission of checking the number of photons in an L-pulse
train, the argument of the binary entropy function for the
privacy amplification is nearly doubled. Roughly speak-
ing, this amounts to an additional loss of 3dB in the
channel.

Our results show that the main feature of the RRDPS
is maintained even if the exact number of photons in-
cident on Bob’ s apparatus is unknown. The absence of
statistical estimation also has a practical advantage when
the communication time is short and the finite-key effect
is dominant. It is also interesting to consider whether a
similar argument is applicable to the originally proposed
implementation of the RRDPS protocol with an active
variable delay.
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Proof of proposition 1 in “Round-robin differential phase-shift quantum key
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I. PROOF OF PROPOSITION 1

In this supplementary material, we will prove Proposi-
tion 1 in “Round-robin differential phase-shift quantum
key distribution protocol with threshold detectors”.

Probosition 1 For Bob’s apparatus in the actual setup
in Fig. 1, there exists an alternative procedure of pro-
ducing an unordered pair {i, j} through the production
of ordered pair (i, j), satisfying the following properties
(a) and (b) regardless of the state received by Bob. Let
p(i,j) be the probability of the ordered pair produced in
the alternative protocol. (a) p{i,j} = p(i,j) + p(j,i), where
p{i,j} is the probability of unordered pair in the actual

protocol. (b) p(j|i) =
p(i,j)∑
j′ p(i,j′)

≤ p̃ = 2
L , for all

i, j ∈ {1, · · · , L}, i ̸= j.

In order to prove Proposition 1, we consider an equiva-
lent protocol for Bob producing an ordered pair (i, j). Be-
fore considering the probability distribution of an ordered
pair (i, j), we focus on that of an unordered pair {i, j}.
In the actual protocol, it is determined by the measure-
ment in Fig. 1. The multiway beamsplitter (MBS) splits
each pulse into L − 1 paths evenly. The first beamsplit-
ters (BSs) of the interferometers further split these pulses
into 2 paths evenly. A pulse brought to r-delay MZI will
be superposed with rth pulse after it or rth pulse before

it. Let ĉ†i,i±r be the creation operator of the mode which
comes from ith pulse and will be superposed with i± r-
th pulse at the 2nd BS of the r-delay MZI. When i ± r
is smaller than 1 or greater than L, it should be under-
stood as representing a pulse in the previous or subse-
quent L-pulse train. Although the actual measurement
involving the relative phase corresponds to the operator

(ĉ†(i,j) ± ĉ†(j,i))(ĉ(i,j) ± ĉ(j,i))/2, we are only interested in

the probability distribution of a pair {i, j}. Since a pair
{i, j} is detected if and only if there are photons in ei-
ther or both of the two modes, it can be determined only

through the total photon number ĉ†(i,j)ĉ(i,j) + ĉ†(j,i)ĉ(j,i).

In the alternative protocol, we use the measurement cor-

responding to ĉ†(i,j)ĉ(i,j) and ĉ†(j,i)ĉ(j,i) instead of the ac-

tual measurement, and assume that the pair {i, j} is de-
tected whenever the total photon number is nonzero. We
denote Pn as the probability that the measurement result

of ĉ†(i,j)ĉ(i,j) is n(i,j), where n is a set of 2L(L−1) variables

n(i,j) for i ∈ {1, · · · , L}, j ∈ {i−L+1, · · · , i+L−1}\{i}.
The number Nn of the detected pairs in a single L-pulse

FIG. 1. An implementation of a protocol using Mach Zender
interferometer (MZI) array. Alice’s laser emits pulses with
an interval ∆τ . A phase shift {0, π} is applied to each pulse
randomly. Bob uses a multiway beamsplitter (MBS) which
splits pulses evenly and make them superposed by L−1 MZIs
made from two half beamsplitters (BS) and two photon de-
tector (PD). The r-delay MZI superposes two pulses whose
time interval is r∆τ .

train is related to n as

Nn

=# { {i, j} | i, j ∈ {1, · · · , L}, i ̸= j, n(i,j) + n(j,i) > 0 } .
(1)

Using these values, we can write the probability p{i′,j′}
that a pair {i′, j′}(i, j ∈ {1, ...L}, i ̸= j) is announced as

p{i′,j′}

=
∑

{n|n(i′,j′)+n(j′,i′)>0 }

Pn
1

Nn
. (2)

Suppose that a pair {i, j} is chosen. It means n(i,j) +
n(j,i) > 0. The alternative protocol chooses an ordered
pair through the following rule.

(i) If n(j,i) is zero, we choose (i, j).

(ii) If n(i,j) is zero, we choose (j, i).

(iii) If neither is zero, we choose (i, j) or (j, i) randomly.

This rule defines the probability p(i,j) of choosing an or-
dered pair (i, j) as

p(i′,j′) =
∑
n

Pn
1

Nn
E(i′,j′)

n

(
1

2

)E(j′,i′)
n

, (3)

where E
(i,j)
n is defined as

E(i,j)
n =

{
0 n(i,j) = 0

1 n(i,j) > 0
. (4)
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From this definition, it automatically satisfies

p{i,j} = p(i,j) + p(j,i). (5)

We will show there is a constant Λ satisfying

p(i,j) ≥ Λp(i,j′) (6)

for all i, j, j′ ∈ {1, · · · , L}, i ̸= j, i ̸= j′. If this inequality
holds, we can derive the following inequality.

p(j|i) :=
p(i,j)∑

j′∈{ k|k∈{1,··· ,L},k ̸=i } p(i,j′)

≤
p(i,j)

p(i,j) + (L− 2)Λp(i,j)

=
1

1 + (L− 2)Λ

. (7)

Now we will determine the constant Λ. We consider
a permutation operation σ which permutates the values
of n(i′,j′) and n(i′,j′′) in the number distribution n. Note
that this permutation does not change (j′, i′) and (j′′, i′).
Since MBS and first BSs split each pulse evenly, the prob-
ability distribution Pn is symmetric under this permuta-
tion.

Pσn = Pn. (8)

For any function f(n) of n, the order of a summation is
irrelevant in taking the sum over all possible values of n,
namely, ∑

σn

f(n) =
∑
n

f(n). (9)

This leads to

p(i′,j′′)

=
∑
n

Pn
1

Nn
E(i′,j′′)

n

(
1

2

)E(j′′,i′)
n

=
∑
σn

Pσn
1

Nσn
E(i′,j′′)

σn

(
1

2

)E(j′′,i′)
σn

=
∑
σn

Pn
1

Nσn
E(i′,j′)

n

(
1

2

)E(j′′,i′)
n

=
∑
n

Pn
1

Nσn
E(i′,j′)

n

(
1

2

)E(j′′,i′)
n

.

(10)

We consider a ratio X defined as

X =
Nn2

E(j′,i′)
n

Nσn2E
(j′′,i′)
n

. (11)

When E
(i′,j′)
n equals to 1, this value can be calculated as

X =



1 (E(i′,j′′)
n ,E(j′,i′)

n ,E(j′′,i′)
n )

=(0,0,0),(1,0,0),(0,1,1),(1,11)

2Nn

Nn+1
(E(i′,j′′)

n ,E(j′,i′)
n ,E(j′′,i′)

n )
=(0,1,0)

Nn

2(Nn−1)
(E(i′,j′′)

n ,E(j′,i′)
n ,E(j′′,i′)

n )
=(0,0,1)

2 (E(i′,j′′)
n ,E(j′,i′)

n ,E(j′′,i′)
n )

=(1,1,0)

1
2

(E(i′,j′′)
n ,E(j′,i′)

n ,E(j′′,i′)
n )

=(1,0,1)

. (12)

Since we assumed E
(i′,j′)
n = 1, Nn is no less than 1. If

the condition E
(j′′,i′)
n = 1 also holds, Nn is no less than

2. Hence X ≥ 1
2 always holds, leading to

p(i′,j′′)

=
∑
n

Pn
1

Nσn
E(i′,j′)

n

(
1

2

)E(j′′,i′)
n

=
∑
n

PnX
1

Nn
E(i′,j′)

n

(
1

2

)E(j′,i′)
n

≥1

2

∑
n

Pn
1

Nn
E(i′,j′)

n

(
1

2

)E(j′,i′)
n

=
1

2
p(i′,j′).

(13)

Thus we can set Λ to be 1
2 and obtain

p(j|i) ≤ 2

L
. (14)


