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Abstract
A quantum key distribution protocol using an optical states based on nonorthogonal entangled pairs is
investigated. It consists of sharing a similar key between the sender and the receiver by exchanging the
quantum correlation of coherent states. These states are used as the support of the encoding information
where affected by an amplitude damping channel. The security of the present protocol against beam splitter
attack is studied as function of the information gain.

Q.C. using coherent states
A coherent state of one mode of the electromagnetic
field can be expressed as

| ± α〉 = e−
|α|2
2

∞∑
n=0

(±α)n√
n!
|n〉, (1)

where |n〉 denotes the state with photon number n,
〈n〉 = |α|2. For us, we use the coherent states as a
carrying of information by the different manner:

|α〉 → |0L〉, | − α〉 → |1L〉
|ια〉 → |0L〉, | − ια〉 → |1L〉. (2)

Alice prepares the Bell states of coherent states,

|ψ±〉 = N±α,α(|α〉|α〉 ± | − α〉| − α〉)
|φ±〉 = N±α,α(|ια〉|ια〉 ± | − ια〉| − ια〉), (3)

Amplitude damping
We consider the following non-Markovian master
equation

∂ρ±

∂t
=

2∑
i=1

γ(t)[aiρ
±a†i −

1

2
(a†iaiρ

±+ ρ±a†iai)], (4)

In a non-Markovian channel an initial coherent state
evolves as

| ± α〉 → | ± αe− 1
2 Γ(t)〉, (5)

the transmissivity of the channel is

Γ(t) = 2

∫ t

0

γ(s)ds. (6)

The decay rate evaluated for an Ohmic reservoir
with Lorentz-Drude cutoff,

Γ(t) = γM [1− ewc cosw0t−
wc
w0
e−wct sinw0t] (7)

Protocol
The correlation of the coherent states allows to
transmit the key between two parties securely. Al-
ice prepares a sequence of coherent states by sending
one of the states to Bob.

1. Alice chooses a subset of random positions
within a sequence of data to be transmitted.

2. Alice transmits random bits encoded with a
set of non-orthogonal states |α〉 = |0L〉 and
| − α〉 = |1L〉 or |ια〉 = |0L〉 and | − ια〉 = |1L〉
from chosen subset which provides a raw key.

3. Bob randomly chooses a quadratures, either x̂
or p̂, to measure the traveling qubits. Then he
sends via classical channel his choices of the
measurements to Alice without giving the in-
formation about the results of measurement.

4. Alice measures the first state of mode-1 from
the classical information which sent by Bob (x̂
or p̂).

5. Using the detectors, Bob can easily detect
the presence of eavesdropping in the quantum
channel. He warns Alice in the case where he
detects any.

6. Alice deduces Bob results by using the results
of home qubits. In the end, they get the secret
key.

The evolution of the bipartite quantum entangle-
ment C as function of α, where the solid curve
presents ρ−φ and ρ−ψ and dashed curve presents ρ+

φ

and ρ+
ψ .

Eavesdropping

Eve’s task is to distinguish the four states. However,
the four states are not orthogonal. In order to known
how much she can learn and how much she disturbs
the signal state, it is sufficient to calculate Eve’s error
rate QEe on the sifted key for this particular scheme.

UBS |α〉b|0〉e = |
√
Tα〉b| −

√
Rα〉e

UBS | − α〉b|0〉e = | −
√
Tα〉b|

√
Rα〉e, (8)

After beam splitter attack, the resultant state is en-
tangled with respect to the mode of Bob and Eve.
The associated marginal density matrices for Bob are
ρB±α(t) and ρB±ια(t) and for Eve are ρE±α(t) and ρE±ια(t)

which, after the beam splitter, are calculated as

ρB±α(t) = | ±
√
Tα(t)〉〈±

√
Tα(t)|,

ρB±ια(t) = | ± ι
√
Tα(t)〉〈±ι

√
Tα(t)|,

ρE±α(t) = | ∓
√
Rα(t)〉〈∓

√
Rα(t)|,

ρE±ια(t) = | ∓ ι
√
Rα(t)〉〈∓ι

√
Rα(t)|. (9)

Consider that Eve uses an optimum decision strat-
egy that results in the smallest possible error when
distinguishing two non-orthogonal coherent states |∓√
Rα(t〉) and | ∓ ι

√
Rα(t〉). Eve’s error rate QEE :

QEE =
1

4
(1−

√
1− e−2(1−T )|α(t)|2). (10)

Now, Alice and Bob want to evaluate QEE or Eve’s
average information gain IAE = 1−H(QEE),

H(QEE) = −QEE logQEE−(1−QEE) log(1−QEE).

It is immediately confirmed that the sum of the
squared measures of disturbance VE and distinguisha-
bility DB = 1 − 2QEE =

√
1− V 2

E reaches its ex-
pected upper bound of unity; D2

B + V 2
E = 1. On

the other hand, Bob’s information gain IAB = 1 −
H(QBB) is easily evaluated by publicly revealing a
part of his sifted keys.

Results

After the transmission of a large number of states,

Bob constructs his key by taking into account the
following decision rule:{

1, if x > x′

0, if x < x′
(11)

Then the probability distribution of quadrature mea-
sured by Bob is written as

P (x, α) = |〈x|α〉|2 =

√
2√
π
e−2(x−α)2 . (12)

If Alice announces the states she sent, Bob can ob-
serve the quadrature distributions for the coherent
states as presented in figures.

Conclusion
As a coherent state qubit travels along a fiber-optic cable

it suffers from two forms of decoherence. Absorption causes

both a decrease in the amplitude of the coherent state and a

dephasing in the qubit basis. The amplitude can be restored

through quantum key distribution using a specially prepared

Bell-state.
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