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EXTENDED ABSTRACT

Signature schemes allow for the exchange of messages
from one sender to multiple recipients, with the guaran-
tee that messages cannot be forged or tampered with.
Additionally, messages can be transferred (if one recipi-
ent accepts a message, she is guaranteed that others will
accept the same message) and cannot be repudiated (if
a recipient accepts a message, the sender cannot later
successfully deny that she sent it). Digital signatures are
widely used and are often said to be one of the most
important inventions of modern cryptography. Unfortu-
nately, the security of commonly used signature protocols
relies on the assumed computational difficulty of certain
problems. In the United States, for example, there are
currently three approved algorithms for generating dig-
ital signatures — RSA, DSA and ECDSA - all of which
rely on the difficulty of finding discrete logarithms or fac-
toring large primes. With the advent of quantum com-
puters, such assumptions will no longer be valid. Due to
their importance, it would be desirable to develop sig-
nature schemes providing unconditional or information-
theoretic security.

Different quantum signature schemes, including the
original quantum digital signature (QDS) scheme pro-
posed in [1], are one possible solution. Their security is
unconditional, relying only on laws of quantum mechan-
ics. The simplest case for a signature scheme is the three-
party scenario with a sender, Alice, and two recipients,
Bob and Charlie. Any participant may be dishonest, but
there are restrictions on how many participants may be
dishonest. With three participants, two dishonest parties
working together can trivially cheat, and thus with three
parties, it is assumed that at most one party is dishonest.
A recently proposed quantum signature scheme [2] uses
only the same experimental components as required for
quantum key distribution, and is thus the most practical
such scheme to date. Essentially, Alice here randomly
chooses a sequence of qubits, in the X or Z basis states.
One copy of the qubit sequence was sent to Bob and one
to Charlie, who make measurements to gain information
about Alice’s sequence of states. To later sign a message,
Alice presents the message together with the full classi-

cal information of the corresponding sequence of qubit
states (there is one qubit sequence per possible one-bit
message, and to sign longer messages, the scheme should
be suitably iterated). Since Alice uses complementary
bases, neither Bob or Charlie can gain full information
about her state sequences, which prevents forging, but
Alice also cannot know exactly what information each of
them did gain. Further, to protect against repudiation
and ensure transferrability, Bob and Charlie use a secret
classical channel to exchange half of their measurement
outcomes. This symmetrises Bob’s and Charlie’s mea-
surement statistics and ensures that Alice cannot make
them disagree on the validity of a message, except with
negligible probability.

So far, however, all practical quantum signature pro-
tocols have suffered from two main issues. First, they
make unrealistic trust assumptions [2], [3]. In partic-
ular, also in [2] it is assumed that dishonest partici-
pants cannot eavesdrop on the quantum channels, with
the expectation that this assumption could be removed
by the use of a parameter estimation procedure similar
to that employed in quantum key distribution (QKD).
Explicitly showing that this is the case is one of the most
important outstanding questions for quantum signature
schemes. Second, the length of the signature required
to sign a message has been too large for practical use,
see e.g. [4], [5], [6]. In this paper, we present a three-
party quantum signature protocol that removes all trust
assumptions on the quantum channels. The protocol is
shown to be secure and, in terms of resources, entirely re-
alistic — it requires only authenticated classical channels
as well as untrusted, noisy quantum channels. In addi-
tion, the protocol is much more efficient than previous
protocols and significantly reduces the signature length
of a message.

The increase in efficiency is largely due to the fact that
in our protocol Alice sends different states to Bob and
Charlie, whereas in most existing protocols, including the
original QDS protocol [1] and the one realised in [5], she
sent them the same quantum states. In previous proto-
cols, then, even without eavesdropping, a potential forger
had access to a legitimate copy of each of the states Al-
ice sent to the participants. In generalising to N par-



ticipants with up to t colluding dishonest parties, this
problem becomes more serious, since the collusion must
be assumed to have t legitimate copies of each state. By
sending different states to each participant, there is no
such problem. A potential forger can only gain infor-
mation by eavesdropping. This is a quantum-mechanical
version of the classical protocol “P2” in [2]. Even though
Alice sends different states to Bob and Charlie, security
against repudiation still holds due to the secret exchange
of elements between Bob and Charlie. We show how se-
curity against forging is given by a parameter estimation
step (similar to QKD) that quantifies the amount of in-
formation a potential forger, say Bob, could have gained
through eavesdropping on the states sent to Charlie.
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FIG. 1. Total signature length as a function of channel noise

Interestingly, the protocol can tolerate relatively high
levels of noise in the quantum channels. Figure 1 shows
the total signature length as a function of channel noise.
Essentially, in this scheme the keys or signatures are dis-
tributed using the BB84 implementation of QKD, but
without the classical post-processing typically associated
with QKD, that is, without privacy amplification and
error correction. In the asymptotic limit, quantum sig-

natures are possible up to a noise level of =~ 11%, the
same as the asymptotic limit for BB84 QKD (ignoring
pre-processing) [7]. However, for finite key or signature
size, the allowable channel noise is reduced for QKD [8],
due in large part to imperfect error correction, leaking
extra information to Eve. For quantum signatures on
the other hand, the protocol can be made secure using
a finite signature length on any quantum channel with
noise less than 11%, since no error correction has to be
performed. In other words, quantum signatures are pos-
sible for some noise levels which render QKD impossible.
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Quantum signature schemes allow for the exchange of messages from one sender to multiple recip-
ients, with the guarantee that messages cannot be forged or tampered with. Additionally, messages
cannot be repudiated — if one recipient accepts a message, she is guaranteed that others will accept
the same message as well. While messaging with these types of security guarantees are routinely
performed in the modern digital world, current technologies only offer security under computational
assumptions. Quantum signature schemes on the other hand, offer unconditional security guar-
anteed by quantum mechanics. Here, we build on earlier work and remove all trust assumptions
on the quantum channels to present a information theoretically secure scheme implementable with
current technology. Further, in [2] it was shown that whenever QKD is possible, it is possible to
perform an information theoretically secure quantum signature protocol. Here we show that there
exists quantum channels for which quantum unconditionally secure signatures is possible when the

Channels

underlying QKD protocol is not.

INTRODUCTION

In this paper we consider a three-party protocol with
a sender, Alice, and two receivers Bob and Charlie. Pre-
vious signature schemes [1], [2] improved on the origi-
nal Gottesman-Chuang scheme [3] by removing the need
for quantum memory. Alice encoded her signature into
quantum states and sent a copy to both Bob and Char-
lie, who are only able to gain partial information on the
overall signature due to the quantum nature of the states.
However, to prove security they relied on the assumption
of authenticated quantum channels that did not allow
eavesdropping. This meant that a potential forger (Bob)
only had access to his own copy of the signature states
sent from Alice. In reality a fraudulent Bob would be able
to gain extra information on Alice’s signature through
eavesdropping on the signature states sent from Alice to
Charlie. The protocol presented here differs from previ-
ous work in three respects: first, we remove all trust as-
sumptions on the quantum channels, greatly increasing
the actual security of quantum signatures in a practi-
cal setting; second, we show that this quantum signature
protocol is possible using quantum channels which are
too noisy for the underlying QKD protocol; and third,
we allow Alice to send different signatures to Bob and
Charlie, thereby increasing efficiency.

THE MODEL

We assume that between Alice and Bob and Alice and
Charlie there exists authenticated classical channels as
well as untrusted, noisy quantum channels. We assume

Bob and Charlie share a QKD link which can be used to
transmit classical messages in full secrecy. The protocol
makes use of a key generating protocol (KGP) performed
in pairs separately by Alice-Bob and Alice-Charlie. The
KGP uses the noisy quantum channels and has just one
function — it is a method of generating two bit strings,
one for the sender and one for the receiver. The strings
are such that the correlation between the receiver’s string
and the sender’s string is greater than the correlation any
eavesdropper could have with the sender’s string. The
KGP is discussed in section III.

The quantum signature protocol is split into two parts,
a distribution stage and a messaging stage. We show how
the protocol would work for signing a 1-bit message.

Distribution Stage

1. For each possible future one bit message, m, Al-
ice uses the KGP to generate four different length
L keys, AE,A{B,A(?,A?, with the superscript de-
noting with whom she performed the KGP and
the subscript denoting the future message. On the
other side, Bob holds the length L strings K, K
and Charlie holds the length L strings KOC JKC.
Due to the KGP, we know that A% is more highly
correlated with K than any eavesdropper and
similarly for the other strings. Alice’s signature for

the future message m is Sig,, = (A5, AS).

2. For each future message, Bob and Charlie sym-
metrise their keys by choosing half of the bit values
in their K2, K$ and sending them over the Bob-
Charlie secret classical channel to the other partici-
pant. If they chose to forward a bit value, they also
“forget” its value. That is, they will not check a fu-



ture declaration of Alice against these values, they
will only check her future declaration against the
values they kept and the values they received from
the other participant [? ]. We denote their sym-
metrised keys by SZ and SC with superscript indi-
cating whether the key is held by Bob or Charlie.
Bob (and Charlie) will keep a record of whether an
element in SZ came directly from Alice or whether
it was forwarded on to him by Charlie (or Bob).

At this point in the protocol, Bob and Charlie each know
half of KZ and half of K$ (in the honest case). If, say,
Bob is dishonest, he can know all of K2 and half of
K&, but will not know the half of K$ that Charlie chose
to keep. Therefore, for each future message Bob and
Charlie each have a bit string of length L and Alice has
no information on whether it is Bob or Charlie who holds
a particular element of the 2L length string (K2, K©).

Messaging Stage

1. To send a signed one-bit message m, Alice sends
(m, Sigpm) to the desired recipient (say Bob).

2. Bob checks whether (m, Sig,,) matches his SZ and
records the number of mismatches he finds. He
separately checks the part of his key received di-
rectly from Alice and the part of the key received
from Charlie. If there are fewer than s,(L/2) mis-
matches in both halves of the key, where s, is
a small authentication threshold, Bob accepts the
message.

3. To forward the message to Charlie, Bob forwards
the pair (m, Sig.,) that he received from Alice.

4. Charlie tests for mismatches in the same way, but
in order to protect against repudiation by Alice he
uses a different threshold. Charlie accepts the for-
warded message if the number of mismatches in
both halves of his key is below s, (L/2) where s, is
the verification threshold, with 0 < s, < s, < 1.

KEY GENERATION PROTOCOL

In this section we describe how two parties, Alice and
Bob, perform the KGP. As mentioned above, the aim of
the KGP is to produce two classical bit strings, one held
by Alice and one held by Bob, such that Alice’s string is
more highly correlated with Bob’s string than any eaves-
dropper can be, even if that eavesdropper is Charlie. To
do this, Alice and Bob essentially perform QKD, but
without the classical post processing steps of error correc-
tion and privacy amplification. In what follows, the un-
derlying QKD protocol upon which the KGP is built will
be the BB84 protocol (with no pre-processing) described
in [5]. Although we present a version of the KGP based

on BB84, we note that the six-state protocol and/or pre-
processing steps could be introduced without difficulty.
It should be stressed that in signature schemes it can-
not be assumed that either Alice or Bob is honest. As
explained below, however, neither gain from dishonesty
during the KGP and so we can assume they are honest.
As is common in QKD, we present the entanglement-
based version of the protocol with the understanding that
this can be reduced to a prepare-and-measure scheme im-
plementable with current technology [5]. Here we present
the protocol as well as show why it achieves the desired
functionality.

1. Alice and Bob agree on a small value of p such that
they will choose to measure in the Z basis with
probability 1 — p and the X basis with probability

p.
2. Bob creates |®)®L+k),

3. Bob sends the second half of each qubit pair to Alice
over the quantum channel. When Alice receives all
of the qubits, she announces this fact to Bob.

4. For each qubit, Alice and Bob jointly (and publicly)
agree to apply o, ® o, with probability 1/2, and
independently, agree to apply o, ® o, with proba-
bility 1/2.

5. Bob randomly chooses k of the qubits to use for pa-
rameter estimation (PE). For each pair of qubits,
they jointly pick a basis (according to p) and both
measure their qubit with respect to that basis (ei-
ther X or Z). When comparing results, it is Alice
who announces her measurement outcome first and
it is Bob who checks this against his outcome. (This
is important for the security against repudiation.)

6. Based on the disturbance level found in PE, Alice
and Bob estimate the number of errors they have,
as well as estimating the possible information Eve
has. If the disturbance is too high, they abort the
protocol.

7. Assuming the disturbance was not too high, they
go ahead and measure the rest of the qubits in a ba-
sis agreed randomly according to p. Alice and Bob
now share a classical key which, with high proba-
bility, is more highly correlated than the key of any
eavesdropper.

We will consider the case when Eve is restricted to col-
lective attacks, and show that she is less correlated with
Bob’s bit string than Alice. For the case of asymptot-
ically large L, security against coherent attacks follows
using the Exponential de Finetti theorem [4]. At the end
of Step 4, as in [5], Alice and Bob will share the product
state U%E;LHC) where o 4p is a mixture of Bell states. The
aim of PE in step 5 is to take k of these states and use



them to bound Eve’s possible information. Following [6],
for any level of noise, @, observed during PE, and for
any fixed choice of some parameter £ > 0, there exists a
choice of k such that the participants can be sure that the
true noise introduced by Eve’s eavesdropping is less than
Q. = Q. + &, except with probability epgr. Importantly,
the value epp decreases exponentially with increasing k
according to

epp = (k+ 1)6_%k£2. (1)

The same is true for @, so in fact we will use k/2 of the
states to bound the noise in the X basis and k/2 states to
bound the noise in the Z basis. We can use these bounds
to bound Eve’s information, which is what we do now.

We give Eve full power and assume she holds a pu-
rification of each o4p. In order to generate correlated
keys, Alice and Bob will make local measurements on
their systems to obtain classical bits. Eve’s goal is to
correctly guess Bob’s measurement outcome given her
quantum systems F1, ..., Fp. Since we are dealing with
collective attacks, Eve will in general perform a collective
measurement. Our goal is to bound the uncertainty Eve
has on the random variable, Y;, which represents Bob’s
i*" measurement outcome. That is, we aim to find the
conditional Shannon entropy H(Y;|EY, EY, ..., E} ), where
the E; are classical random variables representing the
possible outcomes of a general collective measurement.
Taking results from [10] we find

H(Y;|E1, ..., E,), = H(Y;|E;),

< H(Yi|Ey, ... EL) (2)
= h(Pe),

where the last equality follows because the random vari-
able Y;|E1, ..., E} is a classical random variable with two
possible outcomes, and so H(Y;|E1, ..., E}) must equal
the binary entropy, h(p.), for some p, < 1/2. Assume
that, conditional on Eve’s knowledge, Bob’s measure-
ment outcome is b with probability 1 — p. > 1/2. Eve’s
best strategy is then to guess Y; = b, leading to an er-
ror rate of p.. Therefore, in order to lower bound pe, it
suffices to find H(Y;|E;),.

Let Q., Q. be the disturbance levels in the X and
Z bases observed during PE, and @Q,,Q, be the worst
case estimates consistent with I'¢ from PE. Assuming the
worst case, when Bob measures in the Z basis we find [7]

H(Yi|Ei)p = 1= h(Q,). 3)

Alice’s error rates with Bob are estimated directly from
PE as @, and @, for measurements in the Z and X
bases respectively. Since we have a sequence of identically
distributed and independent two-qubit states, overall Eve
will make about Lp. mistakes, while Alice should make
at most L@, mistakes. For Alice to be more correlated
with Bob’s string than Eve, we require that Q, < pe.

If pe, @, < 1/2, this condition is equivalent to h(Q,) <
h(pe), or

1-n(@Q,) - Q) >0. (4)

If (4) is not satisfied, then Alice and Bob will abort the
protocol. If it is satisfied, then they have the assurance
that p. > Q,, except with probability epg. Intuitively,
if there is a reasonably large (but finite) number of re-
maining states, it is likely that Eve will make more than
LQ, errors because her minimum error rate, p,, is higher
than Q. This allows us to prove security against forging
for the full quantum signature protocol, which is done
rigorously below.

SECURITY

In this section, we prove security of the main quantum
signature protocol.

Robustness

Bob aborts if either the (1/2)L states received from
Alice or Charlie have error rate higher than s,. For
any fixed choice of parameter £ > 0, PE in the KGP is
successful except with probability epg, which decreases
exponentially in the size of the sample used, accord-
ing to (1). Let Qp, Q¢ be the Alice error rates ob-
served during PE with Bob and Charlie respectively.
Then the maximum error rate consistent with PE will
be Q := max{Qp, Qc} +&. Choose s, such that s, > Q,
then, using Hoeffding’s inequalities, the probability that
Bob will find an error rate higher than s, is bounded by

P(Honest Abort) < 2exp (—(sa — Q)°L) + 2epp. (5)

The epg is added to account for the possibility of failure
of PE. The factors of 2 arise due to the possibility of
abort due to either the states received from Alice or the
states received from Charlie.

Security Against Forging

In order to forge a message, Bob must give a decla-
ration (m, Sigy,) to Charlie that has fewer than s, (L/2)
mismatches with the unknown (to Bob) half of S¢ sent
directly from Alice to Charlie, and fewer than s,(L/2)
mismatches with the half he himself forwarded to Charlie.
We can assume that Bob will make fewer than s,(L/2)
errors on the half that he forwarded to Charlie, and we
consider only the unknown half. If parameter estima-
tion is successful in the KGP, then we know the worst
case rates at which Alice and Bob/Eve will make errors
with Charlie’s key; denote them @Q,p. respectively. If



the protocol was not aborted, then Q < p., so we can
choose s, such that @ < s, < p.. On each of the L/2
signature elements he is guessing, Bob will make an in-
correct guess with probability p., independent of all other
guesses (since we consider only collective attacks). Us-
ing Hoeffding’s inequalities [8], the probability that Bob
makes fewer than s,(L/2) errors is bounded by

P(Forge) < exp(—(pe — 54)°L) + €pp. (6)

The addition of epp is to account for the possibility that
parameter estimation fails, in which case the bound p, >
(@ may not hold. Note that security against a fraudulent
Bob derives from the Alice-Charlie KGP, in which Bob
plays no part. Any dishonesty on Bob’s part during the
Alice-Bob KGP cannot improve his ability to forge.

Security Against Repudiation

Alice aims to send a declaration (m, Sig,,) which Bob
will accept and which Charlie will reject. To do this,
we must have that Bob accepts both the elements that
Alice sent directly to him and the elements that Char-
lie forwarded to him. In order for Charlie to reject he
need only reject one of either the elements he received
from Alice, or the elements Bob forwarded to him. In-
tuitively, security against repudiation follows because of
the symmetrisation performed by Bob and Charlie using
the secret classical channel. Even if Alice knows and can
control the error rates between A2, AC and K2, K¢,
she cannot control whether the errors end up with Bob or
Charlie. After symmetrisation the keys SZ and SS will
each have the same expected number of errors. Using
results in [11], we find

P(Repudiation) < 2exp(—(s, — 54)°L/4). (7)

Note that security against repudiation derives from the
symmetrisation performed by Bob and Charlie, in which
Alice plays no part. Any dishonesty on Alice’s part dur-
ing either KGP can only lead to higher error rates found
by Bob/Charlie. This can only harm Alice’s chances to
repudiate as it would lead to a larger value of L.

COMPARISON TO QKD

For the BB84 protocol performed with one way post-
processing (and no pre-processing), Appendix A of [7]
gives the asymptotic secret key rate as

r=1- h(Qw) - h(Qz) (8)

Comparing this to (4), we see that the asymptotic condi-
tion for quantum signatures to be possible is exactly the
same as the condition that the secret key rate in QKD

is above zero. In both cases, for symmetric disturbance
(i.e. @ = Q; = Q.), the maximum channel noise allowed
is Q ~ 11%.

The finite case is more interesting. For quantum sig-
natures to be possible, the channel noise must be low
enough for (4) to be satisfied. For QKD, the finite secret
key rate for the asymmetric BB84 protocol used above is
given in [6] to be

r=1-h(Q,) — (Leakgc — A)/L, 9)

where A is a constant depending on the probabilities of
failure for parameter estimation, error correction and pri-
vacy amplification. The term Leakgc depends on the
implementation of error correction, but must be at least
equal to the asymptotic value of Lh(Q,) (perfect error
correction). In practice, error correction will not be per-
fect and it is common to write Leakpc = Lfrch(Q.)
where frpco is an efficiency parameter commonly esti-
mated to be about 1.2 [6]. Overall, we get

F=1-W@,) - froh(@) - 2. (10)

L

Comparing equations (4) and (10), we immediately see
that there are channels for which quantum signatures
are possible and yet QKD is not. While quantum signa-
tures is still possible at noise levels below 11%, the QKD
secret key rate drops to zero at @Q = 9.5%. Again, it
should be stressed that these numbers are protocol spe-
cific, and there are different QKD protocols for which
the quoted rates can be slightly increased. However, by
modifying the KGP to reflect the new underlying QKD
protocol, the same gains can be carried through to quan-
tum signatures. The important point is that, because the
quantum signature scheme omits the inefficient process
of error correction, there should always be some region
where quantum signatures is possible but QKD is not.

DISCUSSION

In this paper we have presented a quantum uncondi-
tionally secure signature protocol which improves on pre-
vious quantum signature protocols by removing all trust
assumptions on the quantum channels between partici-
pants. It may be imagined that by removing such strong
assumptions the efficiency of the protocol would decrease.
In fact the opposite is true — our protocol significantly re-
duces the length signature needed to sign a message. For
a typical QBER of 4% as in [13], [14], a total signature
length of 9.74 x 10% is required to reduce all probabilities
in (5), (6), (7) to below 10~%. We compare this to previ-
ous quantum signature protocols which require a signa-
ture length of the order of 10'° to achieve the same level
of security over 1km [14]. This comparison isn’t entirely
fair, as the signature length 10'° includes losses, whereas



our signature length is the number of states needed to
be sent and received (in the same basis) to have security.
However, it can be expected that for reasonable trans-
mission distances the loss rate will be significantly less
than the 1072 difference.
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FIG. 1. Total signature length, L+, as a function of channel
noise

The increase in efficiency is largely due to the fact that
in our protocol Alice sends different states to Bob and
Charlie, whereas before she sent them the same states. In
previous protocols it was thus always the case that, even
without any eavesdropping, a potential forger had access
to a legitimate copy of each of the states Alice sent to
the participants. In generalising to N participants with
up to t dishonest parties, this problem became even more
serious since the collusion must be assumed to have ¢ le-
gitimate copies of each state. By sending different states
to each participant there is no such problem. A potential
forger can only gain information by eavesdropping, an
activity ignored in previous protocols due to the trusted
quantum channel assumption.

We further showed the existence of channels for which
quantum unconditionally secure signatures is possible
even when QKD is not. For a QBER of 10% the above
QKD protocol is not possible. On the other hand, quan-
tum signatures remains possible and a total signature
length of L+ k = 5.51 x 10% again gives security of 107%.

An important open question is whether the protocol is
secure against coherent attacks in the finite setting. Due
to its similarity to QKD we expect it to be secure, but
leave a rigorous proof for later work.

A feature of this and all other quantum signature pro-
tocols is that the length of the signature increases linearly
with the size of the message to be signed. This makes
such protocols highly inefficient and not well suited to
practical use. It would be desirable to find a signature
scheme with a better scaling. We are currently investi-
gating a scheme which would scale logarithmically with
the size of the message.

Lastly, when generalising this protocol to N par-
ticipants, the number of quantum channels increases
quadratically with N. In the ideal setting, quantum sig-
nature schemes exist where the number of channels scale
linearly with N. So far, practical considerations (such
as channel loss rates) have left all attempts at such pro-
tocols insecure. However, there seems no fundamental
reason why there shouldn’t be a protocol using just IV
quantum channels and perhaps such a scheme could be
found.
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