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In this paper we introduce the problem of secrecy reversibility. This asks when two honest parties
can distill secret bits from some tripartite distribution pXY Z and transform secret bits back into pXY Z

at equal rates using local operation and public communication (LOPC). This is the classical analog to
the well-studied problem of reversibly concentrating and diluting entanglement in a quantum state.
We identify the structure of distributions possessing reversible secrecy when one of the honest parties
holds a binary distribution, and it is possible that all reversible distributions have this form. These
distributions are more general than what is obtained by simply constructing a classical analog to the
family of quantum states known to have reversible entanglement. An indispensable tool used in our
analysis is a conditional form of the Gács-Körner common information.

I. Introduction:
In any QKD protocol, the classical post-processing of measurement data is an essential step in obtaining secret

key. For two-party secrecy, the measurement data typically consists of a tripartite distribution pXY Z : Alice (X) and
Bob (Y ) share correlations about which, undesirably, Eve (Z) has side information. The distribution is manipulated
using local operations and public communication (LOPC), and the goal is to obtain secret bits ΦXY · qZ . Here,
ΦXY (i, j) = (1/2)δij is a perfectly correlated bit while qZ is an arbitrary and uncorrelated distribution. Inspired by
the conceptual successes of entanglement theory and the distillation of entangled bits (ebits) under local operations
and classical communication (LOCC), researchers have recently begun applying a resource-theoretic perspective
toward the notion of secrecy in classical information theory [1, 2]. The goal of this paper is to better understand
the problem of secret key distillation for application in QKD by sharpening the resource-theoretic characterization of
secrecy.

Quantum entanglement and classical secrecy share many striking similarities [1–9]. One important similarity lies
in the tasks of resource distillation and resource cost. For a bipartite quantum state ρAB , its distillable entanglement
ED(ρAB) quantifies, roughly speaking, the amount of ebits that can be distilled from ρAB using LOCC [10] (in
the many-copy sense), while its entanglement cost EC(ρAB) quantifies the amount of ebits required to generate
ρAB using LOCC [11]. For a distribution pXY Z , its “secrecy content” can analogously be quantified in terms of
its distillable key KD(pXY Z) [12, 13] and its key cost KC(pXY Z) [14]. Here, the distillation goal is to obtain
secret bits ΦXY from pXY Z , while the formation goal is simulate pXY Z using ΦXY and public communication.
Compared to entanglement theory, much less is known about the relationship between KD and KC , except for the
expected hierarchy KC ≥ KD [14]. The secrecy reversibility problem asks what distributions satisfy KC(pXY Z) =
KD(pXY Z).

II. Introducing a Zoo of Distributions:

Our results involve identifying certain tripartite distributions with important secrecy properties. A hierarchy of
such distributions and their relationship to the reversibility problem are summarized in Fig. 1. We quickly summarize
the definitions here.

For distribution pXY , a maximal common function is a variable JXY such that

H(JXY ) = max
K
{H(K) : 0 = H(K|X) = H(K|Y )}. (1)

The valueH(JXY ) has been identified by Gács and Körner as the common information betweenX and Y [15]. It can
be shown that for every pXY , the variable JXY is unique up to a relabeling of its range. For a tripartite distribution
pXY Z , we will denote a maximal common function of the conditional distribution pXY |Z=z by JXY |Z=z . Then, a
maximal conditional common function JXY |Z is just a collection of maximal common functions {JXY |Z=z : p(z) >
0}. We say that a distribution pXY Z is block independent (BI) if I(X : Y |JXY |ZZ) = 0; equivalently, if the
distribution decomposes as

p(x, y, z) =
∑

JXY |Z=z=j

p(x|z, j)p(y|z, j)p(j, z), (2)
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where p(x|z, j)p(x|z, j′) = 0 and p(y|z, j)p(y|z, j′) = 0 for j 6= j′. A BI distribution is called secret block
independent (SBI) if Eve is uncorrelated from Alice and Bob (i.e. p(j, z) = p(z)). Next, a distribution is said to
be uniform block independent (UBI) if it is block independent, and there exist local coarse-graining maps KX(X)
and KY (Y ) such that Pr[JXY |Z = KX = KY ] = 1 for some maximal common function JXY |Z . In other words,
Alice and Bob can determine the value for JXY |Z simply by consulting their local variable. With many copies of a
UBI distribution, secret key can be distilled via privacy amplification at an optimal rate H(JXY |Z |Z) = I(X : Y |Z)
[12, 16]. We say pXY Z is uniform block independent under public discussion (UBI-PD) if it is BI and there is a
public communication protocol generating messagesM such that p(MX)(MY )(ZM) is UBI and I(M : JXY |Z |Z) = 0.
Finally, a distribution belongs to the class UBI-PD↓ if there exists a channel Z|Z such that pXY |Z is UBI with the
required public communication M also satisfying I(Z : JXY |Z |MZ) = 0. For a distribution belonging to UBI-PD↓,
it can be shown that KD(pXY Z) = I(X : Y ↓ Z).

III. Results:

Here we summarize our results. Proofs can be found in [17].

Lemma 1. For the distribution pXY Z , KC(pXY Z) ≥ I(X : Y ↓ Z). Equality is obtained iff pXY Z is BI, where Z|Z
is the minimizer in I(X : Y ↓ Z). When equality holds, KC(pXY Z) = I(X : Y ↓ Z) = H(JXY |Z |Z).

Due to their structure, every UBI-PD↓ distribution demonstrates KD(pXY Z) = I(X : Y ↓ Z). Furthermore,
since these distributions admit a channel Z|Z with pXY Z being BI, Lemma 1 gives that KD(pXY Z) = KC(pXY Z)
for every UBI-PD↓ distribution. We have thus identified a family of distributions possessing reversible secrecy, and
we conjecture that this family completely characterizes secrecy reversibility in the classical setting. The conjecture
obviously holds true for any distribution with 0 = KC(pXY Z) = KD(pXY Z) since KC(pXY Z) = 0 implies I(X :
Y ↓ Z) = 0 by Lemma 1, and any distribution satisfying the latter condition is UBI-PB↓ by definition. The conjecture
can also be shown as true for distributions satisfying min{|X |, |Y|} = 2.

Conjecture 1. KC(pXY Z) = KD(pXY Z) iff pXY Z is UBI-PD↓.

Theorem 1. If min{|X |, |Y|} = 2, then KC(pXY Z) = KD(pXY Z) iff pXY Z is UBI-PD↓.

Comparing Reversible Secrecy and Reversible Entanglement:

An arbitrary distribution p(x, y, z) can be embedded into a tripartite quantum state via the following prescription:

|Ψ〉ABE =
∑
x,y,z

√
p(x, y, z)|xyz〉. (3)

We first consider embedding reversible distributions into quantum states as in Eq. (3). In particular, we focus on
distributions with |X | = |Y| = 2 so that the corresponding ρAB := TrE |Ψ〉〈Ψ|ABE is a two-qubit state. We can
make a comparison between the secret key of the underlying distribution and the entanglement of the embedded
quantum state using an analytic formula for the entanglement of formation EF [18].

Theorem 2. For reversible pXY Z with |X | = |Y| = 2 and KD(pXY Z) > 0:

KD(pXY Z) =
∑
z∈Z

p(z)E
(

2
√
p(0|z)p(1|z)

)
, EF (ρAB) = E

(
2
∑
z∈Z

p(z)
√
p(0|z)p(1|z)

)
,

where E(x) := h(12 [1 −
√

1− x2]) is strictly convex in x for h(x) := −x log x − (1 − x) log(1 − x). The equality
KD(pXY Z) = EF (ρAB) holds iff H(X|Z = z) is constant for all z ∈ Z .

It is natural to wonder whether a quantum state with an embedded reversible distribution will likewise possess
reversible entanglement. However, one can already see in two qubits that this will not be true in general. Every two-
qubit embedded ρAB with KD(pXY Z) > 0 will take the form ρAB =

∑
z

∑1
j,j′=0 p(z)

√
p(j|z)p(j′|z)|jj〉〈j′j′|.

This is a so-called maximally-correlated state for which entanglement reversibility is known to be lacking whenever
ρAB is not pure [19, 20]. In fact, EF (ρAB) is additive for the states of Theorem 2 [21]. Thus,

Corollary 1. When |X | = |Y| = 2, any distribution with nonzero reversible secrecy will have nonzero reversible
entanglement when embedded in a quantum state iff the embedded state is pure.
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Bipartite pure states are well-known to possess reversible entanglement under LOCC. Among the “zoo” of dis-
tributions introduced in this paper, we argue that SBI distributions are the closest classical analog to quantum pure
states. An SBI distribution has the form

p(x, y, z) =
∑
j

p(x|j)p(y|j)p(j)q(z), (4)

where p(x|j)p(x|j′) = p(y|j)p(y|j′) = 0 if j 6= j′. The reason for this association is that a quantum embedding
of any SBI distribution à la Eq. (3) recovers a pure state for Alice and Bob with Schmidt basis vectors |αj〉 =∑

x

√
p(x|j)|x〉 and |βj〉 =

∑
y

√
p(y|j)|y〉. Operational analogs between SBI distributions and bipartite pure states

can also be demonstrated [1]. Beyond pure states, the only known quantum mixed states demonstrating entanglement
reversibility are the so-called locally-flagged states [19, 20, 22, 23]. These are ensembles of pure states that can be
perfectly discriminated using LOCC such that no entanglement is lost in the discrimination process. What is the
classical analog of LOCC-flagged mixed states? Given the identification of an SBI distribution as a classical pure
state, we identify LOPC-flagged classical states any distribution of the form

p(x, y, z) =
∑
M=m

p(x, y|m)p(z|m)p(m) (5)

where M is generated by a public communication protocol with I(X : Y |JXY |M ,M) = 0 and H(M |Z) = 0.
Analogous to LOCC-flagged states, an LOPC-flagged state is an ensemble of SBI distributions that can be perfectly
distinguished using LOPC such that no secrecy from Eve is lost in the discrimination process. All LOPC-flagged
distributions demonstrate secrecy reversibility, however there are many reversible distributions that are not LOPC-
flagged.

CONCLUSIONS

We have presented a class of distributions UBI-PD↓ that are conjectured to fully characterize reversible secrecy.
Despite the complexity of these distributions, validity of this conjecture would mean that reversibility of some distri-
bution could be decided by a single-copy analysis. Turning back to the analogous problem of entanglement reversibil-
ity in quantum states, one might then likewise hope for a solution on the single-copy level. Only LOCC-flagged mixed
states are known to possess entanglement reversibility, and these can indeed be identified by having a particular single-
copy structure. We have proposed a classical analog to LOCC-flagged states that likewise possess reversible secrecy,
but these do not constitute the full set of reversible states. Therefore, if only LOCC-flagged quantum states possess
entanglement reversibility, then the analogous statement for secrecy in classical states would not be true. On the other
hand, if entanglement and secrecy are truly on equal footing in terms of reversibility characters, then our findings
might suggest the existence of reversible entanglement beyond LOCC-flagged states.
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FIG. 1. A hierarchy of distribution classes and their relation to classes of reversible quantum states.
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