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We show how general graph states, an important resource state for multipartite quantum proto-
cols, can be distributed over large distances using intermediate repeater stations. To this aim we
describe a one way quantum repeater scheme using encoding in the language of graph states. For
a general Calderbank-Shor-Steane (CSS) code we do a refined error analysis that allows to correct
qubit errors and erasures caused by imperfect preparation, gates, transmission, detection, etc.. We
analyze the cost and the repeater rate for this general scheme. The concept is exemplified by the
7-qubit Steane code and the quantum Golay code.
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I. INTRODUCTION TO QUANTUM
REPEATERS

Signals in long distance telecommunications are subject
to corruptions. Typically the amplitude decreases
exponentially with the covered distance. Thus inter-
mediate repeaters which amplify and purify the signal
are necessary building blocks for reliable transmission.
In quantum cryptography and quantum communication
the signals carry coherent quantum information.
One possibility to overcome the exponential scaling of
losses with distance is the entanglement swapping and
-distillation based repeater scheme, which was developed
by H.-J. Briegel et al. in [1]. Here entangled pairs are
distributed amongst neighboring repeater stations and
Bell measurements on each station result in entangled
states covering a larger distance (so-called entanglement
swapping). These operations introduce errors which can
be tackled by entanglement distillation, i.e. protocols
that concentrate several imperfect copies of entangled
states into a single copy with higher fidelity with respect
to a maximally entangled state. Two-way classical
communication is used to acknowledge reception of
photons.
A different approach, introduced by L. Jiang et al. in
[2], replaces the entanglement distillation step by the use
of quantum error correction codes that allow for forward
error correction, i.e. communication is only required in
one direction. In comparison to the previous schemes
these improve the repeater rate at the cost of being
more demanding in terms of resources and the quality of
operations. Subsequent work considered different codes
and improved the error analysis [3–7].
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II. A REPEATER NETWORK BASED ON
GRAPHS

In the talk we present the scheme that we described
in [8]. Our scheme generalizes error correction based re-
peater schemes to networks, over which a multipartite en-
tangled state is distributed amongst several parties. This
generalization naturally arises from our use of the graph
state formalism [9]. We briefly introduce graph states,
which are states associated with mathematical graphs,
such that each vertex corresponds to a qubit and each
edge to an entangling gate acting on these two linked
vertices. Given a mathematical graph G = (V,E), where
V is a set of vertices and E ⊂ V × V a set of edges, the
corresponding graph state |G〉 is

|G〉 =
∏

(i,j)∈E

C
(i,j)
Z |+〉⊗N , (1)

where CZ is the controlled-phase gate and |+〉 = 1√
2
(|0〉+

|1〉). The state |G〉 is the (unique) common eigenstate to
the eigenvalue +1 of the operators

gi = Xi

∏
j∈V

(i,j)∈E

Zj , i = 1, ..., N, (2)

the generators of the stabilizer of |G〉 (Xi and Zi are
Pauli operators for vertex i).
In our scheme a repeater network corresponds to a
(logical) graph state and each party or repeater station
is associated with a vertex (see Figure 1). Measuring the
qubit on each repeater station in the X-basis effectively
erases the vertices from the graph projecting the shared
state of the parties to the desired graph state (up to
byproduct operators that depend on the measurement
outcomes). This can be seen from the N “main stabi-
lizers” of the network. The main stabilizer Si centered
on party i consists of an X-operator on its qubit and
chains of X-operators on every second qubit leading to
a Z operator on the neighboring parties (this is possible
for an even number of repeater stations on each line,
odd numbers lead to the same result up to a local basis
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(a) The basic building block of repeaters
linking two parties. The upper and lower
operators form the main stabilizer centered

on A and B, respectively.

(b) Example of a multipartite repeater network. The
shown operators belong to the main stabilizer centered on

C.

FIG. 1: The state corresponding to the graph of the
large vertices is obtained up to byproduct operators,

when all the repeater stations (small vertices) are
measured in the X-basis. Arrowheads indicate

transmission directions.

(a) (b)

(c) (d)

FIG. 2: The operations on repeater stations Ri and
Ri+1. The preparation and the gate of station Ri (a)
and the transmission of the qubit produced at Ri to
Ri+1 (b) creates the edge (i, i + 1), where the same
procedure is repeated to create the next edge (c,d).

change), see Figure 1. Thus measuring the repeater
qubits in the X-basis projects onto a state stabilized by
the generators of the graph state associated with the
graph where the repeater vertices have been erased.

Let us consider the basic building block of such
networks, a line of repeater stations corresponding to a
line graph with N vertices numbered from 1 to N . The
first and the last qubit is in possession of Alice and Bob,
respectively. The edges of the graph state are created by
the following steps (see Figure 2). The edge (i, i + 1) is
created locally at the repeater station i: the qubit i + 1
is prepared in the (logical) |+〉-state and processed by a
CZ gate entangling it with qubit i (which was received
from station i − 1). Afterwards it is send to the station
i + 1. Here the same procedure repeats to create the
edge (i + 1, i + 2).

FIG. 3: The circuit for creating the graph state.
Encircled processes can lead to an error on the qubit
measured at repeater i. Solid and dashed lines denote
unnoticed and noticed errors, respectively. Black circle
errors lead to a flip of the measurement outcome. The
outcome will be marked as ? if any white circle error

occurred.

III. SHIFT TO LOGICAL GRAPH STATES
USING CSS CODES

We employ an error model, in which corrupted qubits,
including lost ones, are set to the completely mixed
state. There is a convenient equivalent viewpoint
that corruptions in the circuit are randomly occurring
discrete X or Z errors, i.e. these operators are inserted
into an otherwise perfectly working circuit [10, 11].
The corresponding circuit diagram helps to identify all
possible errors that flip the measurement outcome at
station i, when one pays attention to the propagation
of errors by CZ gates (see Figure 3). An X error on
the control qubit before the gate is transformed into
an X error on the control qubit plus a Z-error on
the target, which flips its X-measurement outcome.
Z-errors in turn do not spread. Even numbers of flips
cancel each other and thus the physical error rate fq is
the probability to have an odd number of errors in the
encircled processes.
Because the information is encoded into a bigger
quantum system with redundancy using a Calderbank-
Shor-Steane (CSS) code, a certain amount of errors is
correctable. CSS codes are an important subclass of
stabilizer codes, for which it is possible to write the
generators of the stabilizer of the code space each solely
with X or Z operators. They have the favorable prop-
erty that controlled-Phase gates can be implemented
transversally (qubitwise) up to a logical basis change on
one of the two qubits. This implies that the previous
analysis of error propagation directly transfers to the
logical CZ gate.
In absence of errors the measurement outcomes are
codewords of the employed code, so a classical decoder
is used for error correction. The additional information
of noticed errors (like heralded losses) can be used
to improve the error correction, i.e. it can allow to
correct more errors. The logical error rate f̄q of a
repeater station, i.e. the probability that the decoder
cannot correct the errors in the (classical) data, can be
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estimated from the effective bit-flip and erasure rates fq
and fl.
The logical errors propagate to the parties via the
application of the byproduct operators. Odd numbers
of errors on one main stabilizer lead to the production
of a state that is orthogonal to the intended one,
decreasing the corresponding fidelity. The formulas for
the calculation that we just sketched can be found in [8].

IV. DISCUSSION OF THE RESULTS

The derivation of the final state is done analytically
and independently of the employed CSS code. To our
knowledge this is the first full error analysis of repeaters
with general CSS codes in the sense that losses and op-
erational errors are taken into account.
We calculated the probabilities of errors on the final
graph state for several CSS codes, separations of the par-
ties and gate qualities. From these rates we can directly
calculate the secret key rate of a quantum key distribu-
tion protocol (e.g. BB84 [12]). We judge different codes
by a cost function introduced by S. Muralidharan et al.
in [7]. It is the total number of qubits per secret key rate
and total distance. Here we want to mention the fol-
lowing results. Already the popular 7-qubit-Steane code
allows to beat a transmission line without any repeaters
for low gate error rates of approximately fG = 10−4.
While this gate quality is clearly demanding, the number
of seven (flying) qubits per repeater station is very low
compared to other schemes in the literature (e.g. [4, 7]),

so this code might be interesting for proof-of-principle
experiments.
For gate errors <∼ 0.1% (and distances that are meaning-
ful on earth) the 23-qubit-Golay code performs remark-
ably well, such that it might even be unnecessary to go
to larger codes for the time being. In this regime it is
the most cost-efficient code as far as we can assess. Un-
fortunately, the repeater spacing is limited to very small
distances, which is an obstacle until the required compo-
nents can be made cost- and space-saving. This seems
to be a general challenge for quantum repeaters with en-
coding. In our case the repeater spacings are in the order
of a kilometer. However, one should keep in mind, that
despite the large number of repeater stations, the cost
is relatively low, because different repeater schemes with
larger repeater separations need a large number of par-
allel transmission lines to achieve the same rates.

V. OUTLOOK

Given the formula for the secret key rate it will be in-
teresting to model errors of different experimental setups
and to optimize over the code as well as the parameters of
the repeater scheme such as the number of repeater sta-
tions. Further research might focus on proof-of-principle
experiments, e.g. of multipartite quantum communica-
tion protocols or conference key agreement in small net-
works without trusted nodes. Furthermore improvements
from the theoretical side can be expected when optimiz-
ing the protocol over the possible abortion strategies (on
specific loss patterns).

[1] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Phys.
Rev. Lett. 81, 5932 (1998).

[2] L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro,
R. Van Meter, and M. D. Lukin, Phys. Rev. A 79, 032325
(2009).

[3] W. Munro, K. Harrison, A. Stephens, S. Devitt, and
K. Nemoto, Nat. Phot. 4, 792 (2010).

[4] A. G. Fowler, D. S. Wang, C. D. Hill, T. D. Ladd,
R. Van Meter, and L. C. L. Hollenberg, Phys. Rev. Lett.
104, 180503 (2010).

[5] N. K. Bernardes and P. van Loock, Phys. Rev. A 86,
052301 (2012).

[6] W. Munro, A. Stephens, S. Devitt, K. Harrison, and
K. Nemoto, Nat. Phot. 6, 777 (2012).

[7] S. Muralidharan, J. Kim, N. Lütkenhaus, M. D. Lukin,
and L. Jiang, Phys. Rev. Lett. 112, 250501 (2014).

[8] M. Epping, H. Kampermann, and D. Bruß, ArXiv e-
prints (2015), arXiv:1504.06599 [quant-ph].

[9] H. J. Briegel and R. Raussendorf, Phys. Rev. Lett. 86,
910 (2001).

[10] M. Nielsen and I. Chuang, Quantum Computation and
Quantum Information, Cambridge Series on Information
and the Natural Sciences (Cambridge University Press,
2000).

[11] D. Lidar and T. Brun, Quantum Error Correction (Cam-
bridge University Press, 2013).

[12] C. Bennett and G. BRassard, Proceedings of IEEE Inter-
national Conference on Computers, Systems and Signal
Processing , 175 (1984).


