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Abstract

The fisherman caught a quantum fish. Fisherman,
please let me go, begged the fish, and I will grant
you three wishes. The fisherman agreed. The fish
gave the fisherman a quantum computer, three quan-
tum signing tokens and his classical public key. The
fish explained: to sign your three wishes, use the to-
kenized signature scheme on this quantum computer,
then show your valid signature to the king who owes
me a favor.

The fisherman used one of the signing tokens to
sign the document “give me a castle!” and rushed to
the palace. The king executed the classical verifica-
tion algorithm using the fish’s public key, and since
it was valid, the king complied.

The fisherman’s wife wanted to sign ten wishes us-
ing their two remaining signing tokens. The fish-
erman did not want to cheat, and secretly sailed
to meet the fish. Fish, my wife wants to sign ten
more wishes. But the fish was not worried: I have
learned quantum cryptography following the previous
story∗. These quantum tokens are consumed during
the signing. Your polynomial wife cannot even sign
four wishes using the three signing tokens I gave you.

How does it work? wondered the fisherman. Have
you heard of quantum money? These are quan-
tum states which can be easily verified but are hard
to copy. This tokenized quantum signature scheme
extends Aaronson and Christiano’s quantum money
scheme, which is why the signing tokens cannot be
copied.

Does your scheme have additional fancy proper-
ties? asked the fisherman. Yes, the scheme has other
security guarantees: revocability, testability and ever-
lasting security. Furthermore, if you’re at sea and
your quantum phone has only classical reception, you

∗The Fisherman and His Wife by the brothers Grimm.

can use this scheme to transfer the value of the quan-
tum money to shore, said the fish, and swam away.

The full version of this QCrypt extended abstract is
available on https://arxiv.org/abs/1609.09047.

Introduction One of the main goals of cryptogra-
phy is to allow an authorized party, typically holding
a secret key, to perform an action which an unautho-
rized party (without the key) cannot. For example,
in a digital signature scheme, the authorized party,
Alice, holds a secret key that allows her to create
digital signatures that will be accepted by a public
verification algorithm. Anyone without Alice’s key
cannot forge her signature.

In this work, we consider the task of delegating
limited authorization: is it possible to provide a one-
time access to the secret key to a third party? For
example, if Alice goes on vacation, can she allow Bob
to sign one (and only one) document of his choice?

Classically, Bob either knows the secret key or
doesn’t, and there is no way to control how many
times the key is used. But with quantum mechan-
ics, the situation is different: the no cloning theo-
rem [1] allows us to create secrets that cannot be
copied. Consequently, we propose the design of cryp-
tographic schemes with two levels of secrets: one clas-
sical “master” secret, which is used only to generate
any number of unclonable quantum “tokens”, each
of which can be used to perform one action, and is
consumed in the process due to destructive effects
of quantum measurements. If Alice holds the secret
key, she can delegate authorization to Bob by grant-
ing him a limited number of quantum tokens.

Tokens for Digital Signatures This work applies
the previous proposal specifically to digital signa-
tures, allowing the delegation of limited authorization
via the use of quantum tokens.
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Digital signature is a cryptographic primitive
which is arguably second in importance only to en-
cryption. A digital signature scheme [2] consists
of three Probabilistic Polynomial Time (PPT) al-
gorithms: key-gen, sign, and verify. The first al-
gorithm outputs a secret key sk and a public key
pk. The signer can use sk to sign a document α by
calling sign(sk, α). This produces a signature sig,
which can be verified by anyone holding the public
key by calling verify(pk, α, sig). We will denote the
keys as subscripts, so these calls are signsk(α) and
verifypk(α, sig). The verify algorithm returns either
“accept” or “reject”. A valid signature should be ac-
cepted, so verifypk(α, signsk(α)) should accept for all
α. Informally, a digital signature scheme is secure
if an adversary which can ask for signed documents,
cannot efficiently forge any new signed document.

Our main contribution is a construction of a to-
kenized signature scheme. A tokenized signature
scheme consists of 4 quantum polynomial time (QPT
for short) algorithms: key-gen, token-gen, sign, and
verify. In this setting there are three entities: a signer,
a verifier and a new entity, which we will call the sign-
ing authority. In this context, even though the signer
is the one signing the document, it is done in the
name of the signing authority. The authority gener-
ates the pair (sk, pk) using key-gen as before. Next, it
generates a quantum state | 〉, which we call a sign-
ing token, by running token-gensk. Note that differ-
ent calls to token-gensk may produce different signing
tokens. The signer, who gets one copy of a signing to-
ken from the authority, can sign a single document of
her choice. The output of sign(α, | 〉) is a bit-string,
as in the classical setting. The correctness property
remains unchanged: verifypk(α, sign(α, | 〉)) must ac-
cept for all documents α.

The novelty of tokenized signatures is that sign ap-
plies a measurement which collapses | 〉, and there-
fore it cannot be reused to sign an additional docu-
ment. Informally, the security requirement is that a
QPT adversary Adv, with access to the public key pk
and to ` signing tokens | 1〉⊗ . . .⊗| `〉 , cannot gen-
erate valid signatures for `+ 1 different documents.

Here are two motivating examples. (i) A manager
wants to hedge the embezzlement risks that an ac-
countant introduces. This can be achieved by agree-
ing with the bank that any signed wire is limited to
$1000. Then, the manager can grant the accountant
a number of tokens according to the level of her trust
in the accountant. (ii) Online computers are more
prone to hacks than offline computers. A system ad-

ministrator can hold the secret keys on an offline com-
puter, and generate signing tokens to be used on the
online computer. The hacker who steals n signing to-
kens can sign at most n documents, whereas a stolen
secret key can be used to sign any number of docu-
ments.

Tokenized signatures have several other useful
properties. A Tokenized signature scheme can be
used as a digital signature scheme. Every tokenized
digital scheme is also revocable: the signer can destroy
a token in a publicly-verifiable way. Our construction
has an even stronger notion of revocability, testabil-
ity, which allows testing the signing token without
consuming it.

If the adversary has no access to the public key,
revoke and verify-token in some of our schemes have
everlasting security, which means that a computa-
tionally unbounded quantum adversary with access
to a single copy of | 〉 but without access to pk, can-
not pass revocation, while also generating a valid sig-
nature for some document α.

A Candidate Construction It turns out that the
main challenge is to construct a weak scheme, which
supports signing only 1-bit documents, and that is se-
cure only against an adversary with access to a single
signing token. We strengthen any such weak scheme
to a full tokenized signature scheme (which is secure
against adversaries with many tokens, and each to-
ken can be used to sign an arbitrary long document)
using standard techniques.

Our weak scheme is based on Aaronson and Chris-
tiano’s quantum money scheme [3]. Roughly speak-
ing, the construction of Aaronson and Christiano
works as follows. They consider a random subspace A
of Fn

2 of dimension n/2, and the money state (in our
case, this would be the signing token) uses n qubits,
which are in the uniform superposition over A, de-
noted by |A〉.

Another important subspace of Fn
2 is A⊥:

A⊥ = {b ∈ Fn
2 |∀a ∈ A, a · b =

n∑
i=1

aibi mod 2 = 0}.

Applying H⊗n on |A〉 gives the state |A⊥〉:

H⊗n|A〉 = |A⊥〉 =
1

2n/4

∑
b∈A⊥

|b〉.

We can use the above properties to construct a pri-
vate tokenized signature scheme. In the classical lit-
erature, there are two types of digital signatures: the
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standard one, which was described above; the other
is a private (symmetric) digital signature scheme,
known as message authentication code (MAC), in
which verification requires the secret key.

The signing authority samples a random n/2 di-
mensional subspace A as the secret key, and generates
|A〉 as the signing token. The idea is to let any non-
zero element in A correspond to a signature for the
bit 0, and a non-zero element in A⊥ correspond to a
signature for the bit 1. An adversary holding |A〉 can
either measure it in the standard basis to get a (uni-
formly random) element of A, or can measure |A⊥〉
to get an element of A⊥. We show that an adver-
sary with a single copy of |A〉 cannot do both, since
measuring the state collapses it. This is a manifes-
tation of the no-cloning theorem [1]: if the adversary
could clone the state |A〉, and hold two copies of it, he
could use the first copy to find an element of A, and
the second copy to find an element of A⊥, and break
the security of the scheme. The verifier, which in the
private setting knows the secret key (the choice of A
and A⊥), can verify whether the signature is valid,
by testing for the relevant subspace membership.

How can we turn this into a public tokenized sig-
nature scheme? Suppose the adversary has one copy
of |A〉 as before, but additionally can ask questions
of the form: is x in A? Is y in A⊥? We use quantum
query complexity techniques to prove that such an
adversary still cannot efficiently find both a non-zero
element of A and of A⊥. These questions are suffi-
cient to verify signatures. Therefore, the problem we
face is the following: is there a way to obfuscate the
membership for A and A⊥? The obfuscated program
should allow the verifier to test whether an element is
in the relevant subspace, but should not leak any ad-
ditional information about A and A⊥. Aaronson and
Christiano faced the same challenge and suggested
an ad-hoc approach for obfuscating these subspaces.
Unfortunately, their construction is broken (see [4]
and the main text), and therefore cannot be used.

We define a version of virtual black-box obfusca-
tion for subspaces which would be sufficient to prove
our scheme secure, and argue that the existence of
such an obfuscation scheme is plausible (for instance,
there are no known impossibility results that ap-
ply). Unfortunately, there are no candidate construc-
tions which satisfy this requirement. We then conjec-
ture that the indistinguishability obfuscation (iO),
for which there are candidate constructions, satisfies
this definition; under this conjecture, we can prove
our scheme secure.

Computational requirements One of the func-
tions of money is store of value. From an engineering
perspective, this makes quantum money (which our
construction is based on) a challenging task, as it
requires a long term quantum memory to store the
quantum money. Signing tokens do not necessarily
need to be stored for long periods (perhaps, only the
signed documents are), and therefore some applica-
tions may require relatively short term memory, and
will thus be easier to implement in practice. Fur-
thermore, signing requires a very simple (depth 1)
quantum circuit, and verification is done on a classi-
cal computer. Our tokens can be generated using
Clifford circuits, which do not require a universal
quantum computer, and therefore may be easier to
implement. The only task which requires a universal
quantum computer is verify-token. The security of the
weak scheme is exponential in the number of qubits;
this means, among other things, that the depth of
token-gen in all our schemes is only super-logarithmic
(in the security parameter).

Application to Quantum Money We show that
a testable tokenized signature scheme can be used as
quantum money[5, 6, 7, 8, 9, 3, 10, 11, 12]. Inter-
estingly, the quantum money scheme we get this way
has a combination of desirable properties that no pre-
vious scheme had, not even the Aaronson-Christiano
scheme on which our construction is based.

To get a quantum money scheme from a testable to-
kenized signature scheme, simply use the signing to-
kens as money. An interesting property of this scheme
is that the money can be converted into a verifiable
signature for a document. This can be used to send
the money over a classical channel (vis-à-vis “stan-
dard” quantum money, which can only be sent via a
quantum channel).

In particular, suppose Alice wants to send money
to Bob, but she is stranded and cannot get quantum
internet reception on her quantum cellphone. With
our scheme, Alice can use her money as a signing
token to sign the document “I’m sending this money,
with the serial number 03217, to Bob”. Bob can then
take the signed document and present it to his bank.
The bank knows that Alice must have burned her
money to produce the signed document, and so it can
safely issue Bob a new money state. In essence, Alice
can convert a quantum coin into a classical check.
We discuss other advantages of this schemes related
to fraud and other attack vectors.
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