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Abstract—In this abstract, we present ways to improve
efficiency performance of Cascade error reconciliation
protocol. Our ideas are based on using i) known bits and
ii) known parities obtained during the execution of the
protocol. We use this information to get rid of parity checks
and run error corrections on smaller blocks. Computer
simulations show that Cascade with these improvements is
currently more efficient than both all the previous Cascade
versions and other non-Cascade methods proposed for
quantum key distribution information reconciliation.
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I. INTRODUCTION

Cascade protocol is an information reconciliation (IR)
method proposed firstly for use in quantum key distribu-
tion (QKD) in 1993 [1]. For an IR method in QKD,
one of the main performance measures is efficiency
which depends on the amount of exchanged information
to make reconciliation possible. Since this redundant
information is about keys that must be kept secret
from unintended parties and transmitted over public
eavesdroppable channels, it can damage the secrecy of
keys. Therefore, more efficient, that is revealing less
information, IR methods are needed for QKD.

Since its born, three noticable work increasing the
efficiency performance of Cascade more and more are
published in [2]–[4], statistically one per almost every
seven/eight years. Currently, the most efficient version
is the one published in [5]; however, this protocol is not
Cascade anymore since it has major changes.

In this work, we implement the strategy given in
[3] which is still Cascade and apply our improvements.
Simulation results show that the resulting Cascade has
the highest efficiencies as far as we have seen.

II. OUR IMPROVEMENTS

To decrease exchanged information and increase ef-
ficiency performance, we should aim at searching for
errors in blocks as small as possible as performed in [3].
However, there are still other ways to make the blocks
smaller than accomplished in that work; such as, using
exactly known bits and known parities.

A. Exactly Known Bits

As illustrated in Figure 1 below, knowing the parity
of a size-two block, and the value of the corrected bit,
tells us the value of the other bit as well.

Fig. 1. Size-two blocks: Both two bits are exactly known.

Red ones are the parity mismatching blocks that
contain odd number of errors (1, 3, 5, etc.) and green
ones are the parity matching blocks that contain even
number of errors (0, 2, 4, etc.) in the figures.

As illustrated in Figure 2, we can also get the values of
all the three bits in a size-three block. We always take the
bigger half as left branch in our implementations. And,
as illustrated in Figure 3, only one bit will be exactly
known in a size-three block when the error is located in
the right branch (in our implementations).
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Fig. 2. Size-three blocks: Left branching case. All the three bits are
exactly known.

Fig. 3. Size-three blocks: Right branching case. Just one bit is exactly
known.

B. Known Parities

During the protocol, many blocks are created. Before
starting error correction on a block, the (distant) parties
can remove the previously parity calculated smaller
blocks where they agree on and that are included in the
error detected block, as shown in Figure 4.

Fig. 4. Remove included smaller blocks where the parties agreed on
the parity previously. This makes the error detected block smaller.

Applying all these improvements will make Cascade
get rid of some of the parity checks and make some of
the error detected blocks smaller just before applying
error correction, named BINARY, on them.

C. New Parity Check

Based on the previous ideas, our new error detection
strategy on the blocks can be summerized as follows:

• If the block consists of exactly known bits only
or its whole parity can be calculated using the
information in sections II-A and II-B, then no parity
check is done.

• Otherwise, it runs parity check on the block. If par-
ity mismatches, our new Binary method is executed
on the block.

• Otherwise,
– If block size is just 1 bit, this bit is also exactly

known and it is recorded.
– If all other bits of the block are exactly known,

the remaining 1 bit is also exactly known (using
the block parity) and it is recorded.

D. New BINARY

Based on the previous ideas, our new error correction
strategy on the error detected blocks is given as follows:

• First, all the included parity matching blocks and
exactly known bits recorded previously are removed
from the block.

• Next, BINARY error correction is run on the re-
maining smaller block.

• Index of the corrected bit is returned.

E. Efficiency

Let A and B represent the initial secret key bit strings
of length N at the sender’s and the receiver’s sides
respectively, and p is the error rate of the (public)
quantum channel. Then the conditional Shannon entropy
between the two (partially) correlated random variables
A and B is given as,

H(A|B) = Nh(p) (1)

where h(p) is binary entropy function. At least Nh(p)
redundant bits must be exchanged between the sender
and the receiver for successful agreement of their key
sequences.

If we define E as the average number of exchanged
parities, then one measure of the efficiency is defined as
follows,

µ = 1− E

N
(2)



TABLE I
COMPARISON OF OUR MORE EFFICIENT CASCADE IMPLEMENTATIONS WITH [4]

p (%) k1 k2 k3 β
Our

β
η

Our

η
FER

Our

FER
ηFER

Our

ηFER

1 128 512 4096 0.9963 0.9974 1.04219 1.02944 8x10−5 2x10−4 1.0431 1.03171
2 64 512 4096 0.9934 0.9948 1.04006 1.03146 9.3x10−5 0 1.04062 1.03146
3 32 512 4096 0.9906 0.9926 1.03902 1.03050 1.1x10−4 4x10−4 1.03945 1.03214
4 32 256 4096 0.9862 0.9895 1.04313 1.03255 9.4x10−5 1x10−4 1.04342 1.03286
5 16 256 4096 0.9827 0.9875 1.04313 1.03090 8.9x10−5 2x10−4 1.04335 1.03140
6 16 256 4096 0.9777 0.9843 1.0458 1.03221 1.1x10−4 2x10−4 1.04601 1.03262
7 16 256 4096 0.9709 0.9802 1.0505 1.03428 8.7x10−5 2x10−4 1.05065 1.03462
8 8 256 4096 0.9632 0.9751 1.05465 1.03691 9.7x10−5 2x10−4 1.05479 1.03720
9 8 256 4096 0.9575 0.9730 1.05486 1.03481 1.0x10−4 1x10−4 1.05499 1.03494
10 8 256 4096 0.9493 0.9696 1.05736 1.03441 1.0x10−4 7x10−4 1.05747 1.03518
11 8 256 4096 0.9387 0.9647 1.0613 1.03527 1.0x10−4 4x10−4 1.06139 1.03566

A second measure of the efficiency used in the
literature is calculated based on the capacity of the
communication channel (Shannon limit) and given as,

β =
µ

1− h(p)
(3)

And, a third measure of efficiency based on the Nh(p)
limit can is defined as,

η =
E

Nh(p)
=

1− µ
h(p)

(4)

where η indicates the percentage of additional informa-
tion revealed over the limit.

To analyze the robustness of secret key reconciliation
(SKR) methods, frame(FER) and bit error rates(BER)
are used. It is remarkable that higher efficiency values
may not be significant in higher FER values due to
discarding high number of corrupted frames. Therefore,
in the presence of FER, η can be calculated as follows:

ηFER =
(1− FER)(1− µ) + FER

h(p)
(5)

In equation 5, the (1 − FER) multiplier represents
successfully reconciled frames, and (1 − µ) is the ratio
of information revealed in reconciliation of erroneous
bits.

III. EXPERIMENTAL RESULTS

We ran our Cascade implementation with the new
parameter set given in [4], that is, Rounds : 14, k1,
k2, k3: as in Table I, ki : N/2, 4 ≤ i ≤ Rounds for
104 frames of length 214.

In [4], the authors mentioned that their modified
Cascade version, with their improvements and optimal
parameter set, had the best efficiency values in the
literature up to now. As seen from the Table I, our
Cascade version is more efficient than that work.

IV. CONCLUSION

In this abstract, we presented several new ideas to in-
crease the efficiency performance of Cascade. According
to the results, our implementation of Cascade with the
improvements mentioned above is more efficient than
all these LDPC [6], Polar codes [7] and Cascade based
approaches.

V. FUTURE WORKS

In this work, we apply our improvements on the small-
est error detected block. Applying the improvements on
all the error detected blocks and running BINARY on the
smallest of the resulting blocks can also be tried. Also, in
known parities improvement case, we remove the fully
included parity matching blocks. Removing also partly
included parity matching blocks can be tried, too.

REFERENCES

[1] Brassard G, Salvail L. (1993), Secret key reconciliation by public
discussion, EUROCRYPT, Lofthus, Norway. New York, NJ,
USA, Springer. pp. 41023.

[2] Sugimoto T, Yamazaki K. (2000), A study on secret key reconcil-
iation protocol Cascade, Ieice T Fund Electr, E83A: 19871991.

[3] Yan H, Ren T, Peng X, Liu T, Guo H. (2008), Information
reconciliation protocol in quantum key distribution system, IEEE
Fourth International Conference on Natural Computation, Jinan,
China, New York, NY, USA, 3: 637641.

[4] Mateo JM, Pacher C, Peev M, Ciurana A, Martin V. (2015),
Demystifying the Information Reconciliation Protocol Cascade,
QIC, Vol. 15, No:5&6 0453-0477.

[5] Pacher C, Grabenweger P, Mateo JM, Martin V. (2015), An
Information Reconciliation Protocol for Secret-Key Agreement
with Small Leakage, ISIT, 730-734.

[6] Elkouss D, Leverrier A, Allaume R, Boutros JJ. (2009), Efficient
reconciliation protocol for discrete-variable quantum key distri-
bution, IEEE International Symposium on Information Theory,
Seoul, Korea. New York, NY, USA. pp. 18791883.

[7] Jouguet P, Kunz-Jacques S. (2014), High performance error cor-
rection for quantum key distribution using polar codes, Quantum
Inf Comput, 14: 329338.


	Introduction
	Our Improvements
	Exactly Known Bits
	Known Parities
	New Parity Check
	New BINARY
	Efficiency

	Experimental Results
	Conclusion
	Future Works
	References

