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Introduction. Quantum communication technologies, par-
ticularly quantum key-distribution (QKD), progress rapidly
from research laboratories towards real-world implementa-
tions. The ultimate goal is building a network of quantum
devices (quantum internet) enabling unconditionally secure
communications on the global scale [1–4]. To this end, QKD
has been recently extended to a scenario where two honest
users (Alice and Bob) exploit the mediation of a (possibly un-
trusted) relay, operated by the eavesdropper (Eve), to estab-
lish a secure communication channel [5, 6]. This remarkable
feature is made possible by the working mechanism of the re-
lay itself, which activates secret correlations on the parties’
remote stations by performing Bell detection on the incom-
ing signals and publicly announcing the results [6]. This ar-
chitecture has been called measurement-device independent
(MDI) QKD because, as such, the privacy of the communica-
tion does not rely on the trustability of the parties’ detection
devices [5, 6]. These are in fact more exposed to side-channel
attacks than other devices controlled by the parties. In addi-
tion to this, MDI-QKD allows to distribute secret key preserv-
ing a basic network structure.

Recently, protocols exploiting quantum continuous vari-
ables (CV) attracted considerable attention, for their potential
of boosting the communication rate, and for their employabil-
ity in mid-range (metropolitan), high-rate quantum cryptog-
raphy [6, 7]. In particular CV protocols based on Gaussian
operations [8] have been deeply studied for their relatively
simple implementation. The security of Gaussian protocols
is today very well established assuming ideal conditions: Al-
ice and Bob exchanging an asymptotically large number of
signals. By contrast, in realistic conditions the parties can ex-
tract a secret-key only from a finite number of signals. For
this reason, the security analysis of CV protocols progressed
towards the incorporation of finite-size effects within a com-
posable framework [9–13].

In this landscape, a composable security proof for CV MDI-
QKD is still missing. Given the considerable interest in this
layout, and its importance in the implementation of future
quantum networks, this work fills this gap by providing a rig-
orous composable-security proof of CV MDI-QKD. We first
prove the security against collective Gaussian attacks by ap-
plying a new bound on the conditional smooth min-entropy
(see [14] for details). Then, using recent results [10], we ex-
tend our proof to the most general class of coherent attacks.

Outline of the protocol. In the entanglement-based repre-
sentation, Alice and Bob locally prepare a pair of two-mode
squeezed vacuum states. They retain one mode and send the
other one to Eve. Eve jointly measures the incoming sig-
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FIG. 1: In a prepare-and-measure CV MDI QKD protocol, Alice and
Bob send coherent states|α〉, |β〉 (corresponding to the variablesX
andY respectively) to the relay. The relay applies a Bell measure-
ment to the incoming signals, and broadcast the resultγ (correspond-
ing to the variableZ) to Alice and Bob.

nals by applying continuous-variable Bell detection. The out-
comes of such a measurement is broadcast to Alice and Bob.
Finally, both Alice and Bob measure their local modes by
heterodyne detection, obtaining the classical variablesX and
Y . Equivalently, in the prepare-and-measure representation
(shown in Fig. 1), Alice and Bob independently prepare co-
herent states according to a Gaussian distribution.

Since the parties perform local heterodyne detection the
cardinality ofX andY is in principle infinite. However, in
practice one can always apply an Analog to Digital Conver-
sion (ADC) algorithm in order to make the variablesX andY
discrete and bounded. We therefore assume thatX andY are
discrete variables with cardinality22d (i.e.,d bits per quadra-
ture).

Security analysis. According to the leftover hash lemma,
the number of (approximately) secret bits that can be extracted
from the raw key is lower bounded by the conditional smooth
min-entropy ofX (we assume reconciliation on Alice’s), con-
ditioned on the quantum state of the eavesdropper (which in
our setting includes both the quantum partEn and the classi-
cal partZn) [15]

sǫ+ǫEC

n ≥ Hǫ
min(X

n|EnZn)ρn − leakEC(n, ǫEC) , (1)

where we have also subtracted the information leakage
leakEC(n, ǫEC) necessary for EC. The security parameter
ǫ + ǫEC comprises of two terms:ǫ is the smoothing param-
eter entering the smooth conditional min-entropy, andǫEC is
the error in the EC routine.

To proceed with the security analysis, we first assume that
Eve operates a collective Gaussian attack. For collective at-
tacks, the stateρn shared by Alice, Bob, and Eve, can be taken
to have a tensor-power structure, i.e.,ρn = ρ⊗n. On the other
hand, the state that is actually used for key generation is the
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one conditioned upon EC and PE being successful. Because
EC and PE have a non-zero failure probability, the conditional
state is no longer guaranteed to be a tensor-power. Indeed, the
conditioned state have the formρn = p−1Πρ⊗nΠ, whereΠ is
a projector operator (projecting on the subspace in which EC
and PE do not abort), andp = Tr(Πρ⊗nΠ) is the probability
of successful EC and PE [9]. Notwithstanding, we are able to
show (details are provided in [14]) that the state can still be
assumed to be a tensor-power upon replacingǫ → 2

3
pǫ and

shortening the secret key by a small amount oflog
(

p− 2

3
pǫ
)

bits, that is,

sǫ+ǫEC

n ≥ H
2

3
pǫ

min (X
n|EnZn)ρ⊗n − leakEC(n, ǫEC)

+ log

(
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3
pǫ

)

. (2)

The conditional smooth min-entropy can be estimated using
the Asymptotic Equipartition Property (AEP), which yieldsa
bound in terms of the von Neumann conditional entropy [15]:

Hδ
min(X

n|EnZn)ρ⊗n ≥ nH(X |EZ)ρ −
√
n∆AEP(δ, d) ,

where

∆AEP(δ, d) ≃ 4d
√

log (2/δ2) (3)

is also a function of the dimensionality parameterd. Applying
the AEP to Eq. (2) we then obtain

sǫ+ǫEC

n ≥ nH(X |EZ)ρ − leakEC(n, ǫEC)

−
√
n∆AEP

(

2

3
pǫ, d

)

+ log

(
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3
pǫ

)

. (4)

The final step is to estimate the conditional entropy
H(X |EZ) by PE. Under the assumption of collective Gaus-
sian attacks, it is sufficient to consider a realistic beam-splitter
attack (possibly introducing excess noise) on the communica-
tion lines between the users and the relay [6]. In such a case
the attenuation and excess noise can be evaluated from Alice
and Bob joint covariance matrix.

Indeed, as recently shown in [10], the most general coherent
attacks can be reduced to collective Gaussian attacks by ap-
plying a Gaussian de Finetti reduction, provided the protocol
is symmetric under the linear passive unitary transformations
(i.e., those transformations that can be generated by a network
of beam splitters and phase shifters) locally applied by Alice
and Bob. Since our protocol has the required symmetry, secu-
rity against coherent attacks can be obtained by applying an
energy test on a random subset ofk modes. The resulting key
has a security parameter replaced byǫ → K4

50
ǫ, with K ∼ n4,

and it is shortened by2 log
(

K+4

4

)

bits. We therefore obtain
the following expression for the secret key length:

sǫ
′

n ≥ n′Ĥ(X |EZ)− leakEC(n
′, ǫEC)
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− 2 log
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4

)

, (5)
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FIG. 2: Finite-size secret key rate (bits per signal) vs block size
for Alice and Bob being located at the same distance from the re-
lay (same value of the attenuation factorsηA = ηB). Solid black
lines: collective Gaussian attacks. Dot-dashed blue lines: coherent
attacks. Dashed black lines: asymptotic rates. From top to bot-
tom, ηA = ηB = 0.1dB, 0.3dB, 0.5dB, 0.6dB. EC efficiency is
β = 0.95, success probabilityp = 0.99, and the security parameter
ǫ = 10

−21.
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FIG. 3: Finite-size secret key rate (bits per signal) vs block size for
Bob being located close to the relay (attenuation factor of the com-
munication from Bob to the relay isηB = 0.99). Solid black lines:
collective Gaussian attacks. Dot-dashed red lines: coherent attacks.
Dashed black lines: asymptotic rates. From top to bottom, signals
from Alice to the relay are attenuated byηA = 1dB, 3dB, 5dB.
EC efficiency isβ = 0.95, success probabilityp = 0.99, and the
security parameterǫ = 10

−21.
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whereǫ′ = K4(ǫ+ǫEC+ǫPE)/50, andĤ(X |EZ) is a worst-
case estimation for the conditional entropy that holds withan
error smaller thanǫPE. Heren′ = n − k −m is the number
of signal actually used for key extraction, wherek signals are
used for the energy test andm for PE. Figures 2, 3 show the
rate rn = sn/n vs the block sizen in the symmetric and
asymmetric configurations (see captions for details).

Conclusion. In this work we present for the first time a com-
posable security proof for CV MDI QKD. As shown in Fig-
ures 2, 3, our results demonstrate that it is possible to achieve
a nonzero secret key rate against the most general class of co-
herent attacks for block size of the order of106 − 109. There-
fore, our results show that a field demonstration of CV MDI
QKD is feasible with currently available technologies.
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