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Random numbers can be generated from mea-
surement results on suitably configured quantum de-
vices. With care, the generated randomness is pri-
vate. Given a configuration that demonstrates a vi-
olation of local realism, one can certify the gener-
ated randomness in a device-independent way [1].
However, even in the device-independent scenario,
we still constrain the behavior of the randomness-
generation device and the interaction between the
device and any external entity by laws of physics. We
also assume that initial randomness (which can be
from a public source) is available in order to demon-
strate the violation of local realism.

Depending on the specific models and as-
sumptions, different methods for certifying device-
independent randomness have been developed, see
Refs. [2–7]. Almost all the previous methods certify
randomness based only on the observed violation of
one specific Bell inequality. We note that the two re-
cent works [5] and [7] are exceptions. But their per-
formance in the current experimental regime for pho-
tonic experiments with low violations of the CHSH
Bell inequality per trial is unclear.

Recently in Ref. [8] we demonstrated that ran-
domness can be certified from the photonic loophole-
free Bell test reported in Ref. [9]. Motivated by
this demonstration, here we propose a more pow-
erful method to certify randomness.

Our contribution. Our method is based on what
we call “probability estimation” (PE). The goal of
PE is to obtain high-confidence-level upper bounds
on the actual probability of observing the sequence
of experimental results given known constraints on
the distributions. We take advantage of the theory
of test supermartingales to bypass the framework of
Bell inequalities. From the full record of experimen-
tal results, we perform PE by computing products of
“probability estimation factors” (PEFs). These fac-
tors provide a way of multiplicatively accumulating
probability estimates trial-by-trial, where we view a
Bell-test experiment as consisting of a sequence of
trials, each with a (joint) setting input and a (joint)
measurement output. We develop methods to con-
struct PEFs when the set of distributions consid-
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ered is convex. In particular, when the convex set
is a polytope, optimal PEFs can be efficiently con-
structed using well-established optimization tools.

Our method works without assuming indepen-
dent and identically distributed (i.i.d.) results from
different trials in an experiment. It also allows
for adaptive constructions of PEFs that can track
changes during an experiment. This is helpful for
the current experiments, where measurable drifts in
state and setting parameters can wipe out a random-
ness certificate. Due to this adaptive feature, the
number of trials need not be predetermined, and one
can stop running the protocol as soon as the desired
amount of randomness is extractable. Note that
adaptiveness has also been exploited in our work on
the analysis of tests of local realism [10, 11]. When
the trial results are i.i.d., the bounds on the prob-
ability estimated and the corresponding bounds on
the amount of randomness certified are asymptoti-
cally optimal given a constant error.

We apply our method to device-independent
randomness-generation protocols. In particular, we
consider protocols in which external entities have
only classical side information. To certify random-
ness that is private with respect to such entities,
we assume that the trial results satisfy non-signaling
constraints. We can also add Tsirelson’s bound to
enforce “quantum constraints”. Below we demon-
strate our method with two examples, considering
both sets of constraints.

First, we re-analyze the experimental results pre-
sented in Ref. [9] and analyzed in Ref. [8] where
256 random bits within 0.001 (in terms of the total-
variation distance) of uniform were extracted with
respect to classical side information and assuming
non-signaling constraints. With PE, we can certify
the presence of approximately twice as much ran-
domness in the raw data with the same error pa-
rameter, or approximately four times as much if we
assume the stronger quantum constraints, as shown
in Fig. 1. In Ref. [8] we assumed that the setting dis-
tribution is uniform. In this experiment the setting
choices slightly deviate from uniform, as discussed
in Ref. [9]. We define the bias b of a random bit
as twice the largest deviation from uniform in terms
of the total-variation distance. The amounts of ran-
domness certified at a few representative biases are
shown in Fig. 1. We also re-analyzed the results
presented in Ref. [2] where 42 random bits can be
generated at the 99 % confidence level. With our
method, it turns out that at least nine times more
random bits can be generated at the same confidence
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FIG. 1: Log-prob achieved (the amount of randomness
certified) in the XOR 3 data set from Ref. [9]. The log-
prob is the absolute value of logarithm with respect to
base 2 of the final probability estimate achieved. The er-
ror bound εh is an input parameter. The curves show the
achieved log-probs for non-signaling and quantum con-
straints at three representative biases. The curve that is
lowest on the right is the log-prob reported in Ref. [8].

level.

Second, we consider the challenge of producing
more random bits than are consumed. i.e., random-
ness expansion. This requires a strategy to minimize
the entropy used for the input setting choices. In
each trial, with probability r we use a uniform set-
ting distribution (a test trial) and with probability
(1−r), we use a fixed setting. Setting entropy is low
if r is small. We use the outcome table S11 from the
supplementary material of Ref. [12] to determine a
representative distribution ρatoms for state-of-the-art
loophole-free Bell tests involving entangled atoms.
We assume that the distribution of measurement
outcomes conditional on setting choices at each trial
is given by ρatoms. We determine the net entropy
according to PE after n trials in the protocol. Nom-
inally, this is the net number of random bits that
can be generated (without accounting for extractor
parameters). The results are shown in Fig. 2.

Main idea of our method. We consider a
randomness-generation protocol with input a ran-
dom sequence Z = (Zi)

N
i=1 and output C = (Ci)

N
i=1.

Here, Zi and Ci are the input and output of the de-
vice at the i’th trial. We assume that the number of
possible values of each Zi and Ci is finite for all i.
We consider the situation where there is an external
entity E who may have prepared (or accessed) the
randomness-generation device before the user runs
the protocol. Once the protocol starts, E has no
further interaction with the device and holds only
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FIG. 2: Expected net entropy at ρatoms. We optimized
the probability r of test trials given the number of trials
n and the error bound εh.

classical side information. The lack of interaction
implies that any changes to E after running the pro-
tocol are purely external and independent of events
inside the protocol given E’s initial state. We can
therefore time-shift these changes to the beginning
of the protocol and thus remove any dynamics of E.
This justifies the use of a single random variable E
to describe the state of the external entity E.

Intuitively, the output of the device is random if
the probability P(C|Z, E) is bounded away from 1
given constraints on the distributions at each trial.
The distribution at a trial is conditional on E and
the past information. We assume that all the possi-
ble distributions of CiZi at a trial, conditional on E
and the past information, form a convex set, denoted
by H. We first propose a method to obtain a uni-
form upper bound on the probability P(C|Z, E = e)
for all distributions in H and all possible values e
of E. This is what we call “probability estimation”.
Later we discuss how to turn this upper bound into
a formal statement on the amount of randomness
certified.

Our method relies on a random sequence called a
“test supermartingale” [13]. A test supermartingale
with respect to a random sequence R = (Ri)

N
i=0 is

a random sequence T = (Ti)
N
i=0 with the following

properties: 1) T0 = 1; 2) for all i > 0, Ti ≥ 0; 3)
Ti is determined by R≤i; and 4) E(Ti+1|R≤i) ≤ Ti
with respect to all distributions in H. Here we de-
note (Ri)

k
i=0 by R≤k. For the purpose of randomness

generation, the sequence R captures all the relevant
information that becomes available in the sequence
of trials. In particular, Ri includes all the data that
becomes available during the i’th trial. We refer to
the ratio Fi = Ti/Ti−1 as a test factor. We can also
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define test supermartingales in terms of test factors:
Let F be a random sequence such that for all i, Fi ≥
0, Fi is determined by R≤i, and E(Fi+1|R≤i) ≤ 1
with respect to all distributions in H. Then the ran-
dom sequence T = (Ti)

N
i=0, defined by T0 = 1 and

Ti =
∏i
j=1 Fj when i > 0, is a test supermartingale:

Properties 1-3 above are immediate and by definition
we can write E(Ti+1|R≤i) = TiE(Fi+1|R≤i) ≤ Ti. In
this work, this is how we construct test supermartin-
gales.

The definition implies that given a test super-
martingale T, E(Ti) ≤ 1 for all i. (This follows in-
ductively from E(Ti+1) = E(E(Ti+1|R≤i)) ≤ E(Ti)
and T0 = 1.) An application of Markov’s inequality
then shows that for all distributions inH and εh > 0,

P(TN ≥ 1/εh) ≤ εh. (1)

Thus, a large final value t = TN of the test su-
permartingale is evidence against H with the p-
value bound 1/t in the hypothesis test of the model
H [10, 13].

For the purpose of PE, we construct a random
sequence T = (Ti)

N
i=1, where Ti =

∏i
j=1 Fj and Fj

is a deterministic function of the output Cj and in-
put Zj of the j’th trial, such that the product of

the two random sequences T and (P(C|Z, E = e))β

with β > 0 is a test supermartingale for each
e. That is, we have E(Ti+1(P(C≤i+1|Z≤i+1, E =
e))β|R≤i) ≤ Ti(P(C≤i|Z≤i, E = e))β for all the dis-
tributions in H. Since we do not know the prob-
ability P(C≤i|Z≤i, E = e) up to the i’th trial, we
cannot determine the value of the test supermartin-
gale at a trial given all the past information. We call
this an “implicit test supermartingale”. But, we can
still apply Markov’s inequality to show that for all
distributions in H and εh > 0,

P(P(C|Z, E = e) ≥ (εhTN )−1/β) ≤ εh. (2)

The above inequality implies that the interval
(0, (εhTN )−1/β] is a confidence interval for the prob-
ability P(C|Z, E = e) at the (1−εh) confidence level.
In this sense, we call the factors Fi “probability es-
timation factors” (PEFs). We note that the bounds
in Eqs. (1) and (2) can be further improved by using
Doob’s maximal inequality [14] instead of Markov’s
inequality.

Next we show how to construct PEFs. By the def-
inition of test supermartingales, for all i the factors
Fi need to satisfy the following two properties: 1)
Fi ≥ 0, and 2) E(Fi(P(Ci|Z≤i,C≤(i−1), E = e))β) ≤
1 with respect to all distributions in H. When the
set H is convex, we can prove that the second prop-
erty is satisfied once it is satisfied with respect to
all the extreme points of the set H. Hence, when
the set H has a finite number of extreme points,
the second property implies a finite number of lin-

ear constraints on the factors Fi. To apply PE,
we also require that the input Zi at the i’th trial
is independent of the past outputs C≤(i−1) given
the classical side information E and the past inputs
Z≤(i−1). This, along with the chain rule for con-
ditional probabilities, allows us to demonstrate the
equivalence of

∏i
j=1 Fj(P(Cj |Z≤j ,C≤(j−1), E = e))β

and Ti(P(C≤i|Z≤i, E = e))β.

To minimize the typical upper bound on the prob-
ability P(C|Z, E = e), before observing the results
Zi and Ci at the i’th trial we can construct Fi so as
to maximize the expectation Eµ log2(Fi) given the
estimated distribution µ before the i’th trial. This
optimization promises asymptotic optimality in the
i.i.d. case for a constant error bound. Note that we
also need to determine the value of β before running
the protocol.

To determine the amount of extractable ran-
domness, rather than determining a smoothed min-
entropy, we directly compose the probability esti-
mate with a suitable extractor. For this, we as-
sume that the protocol is configured to produce a
requested number σ of random bits within εh of uni-
form. If banked randomness is available, then we can
take a probability estimate 2−σh with error bound
εh (i.e., with the (1 − εh) confidence level) for the
output sequence. If σh < σ, we fill in the output
with dσ − σhe bits and feed this into an extractor.
In this case, the filled output has εh-smoothed min-
entropy σ, so the composition is straightforward. In
the absence of banked randomness, the protocol has
a probability of failure, and a composition and anal-
ysis similar to that in Ref. [8] results in the expected
number of random bits (up to adjustments for ex-
tractor parameters) when the protocol succeeds. Ei-
ther way, the probability estimate translates directly
into the number of extracted bits.

We remark that our framework is in the spirit of
the entropy-accumulation framework of Ref. [5, 6],
but takes advantage of the simplifications possible
for randomness generation with respect to classi-
cal side information. In the entropy-accumulation
framework, the relevant estimators, called min-
tradeoff functions, must be chosen before the pro-
tocol, and the final certificate is based on a sum of
statistics derived from these functions. The error
bound affects the certificate non-linearly and has a
significant impact on the amount of randomness cer-
tified. In the PE framework, PEFs can be adapted,
and probability estimators accumulate multiplica-
tively. For relevant situations, PEFs can be readily
optimized. The error bound reduces the probability
estimate by a straightforward multiplicative factor,
and hence the amount of randomness certified is re-
duced additively, yielding a better controlled error
bound vs. randomness tradeoff.
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