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We study the problem of decomposing a number into its prime factors, N = xy, using a quantum
simulator. First, we derive the Hamiltonian of the physical system that simulates a new arithmetic
function formulated for the factorization problem that represents the energy of a quantum computer.
We solve the spectrum of the quantum system showing that it obtains, for x�

√
N , a prediction of

the prime counting function that is almost identical to Riemann’s R(x). We also introduce a physical
realization of the simulator consisting in preparing a Bell state for two electrons in a Penning trap.
The outcome of the simulator will be the histogram of the measured energies of the simulator.
Only o(log

√
N)3 energy measurements are required to characterize a probability distribution for

the factors of N ; this is similar to Shor’s algorithm complexity for the same problem using quantum
mechanics. It allows to infer the likelihood for a prime to factorize N .

The relevance of this work for network communications lies on the fact that a quantum computer
of this kind will jeopardize the security of the widely used cryptography systems in conventional
communication networks, which relies on the classical intractability of the factorization problem.
Hence, since quantum cryptography (with continuous or discrete variables) is now becoming a
paradigm of secure communications, the work intends to demonstrate the urgency to migrate to
quantum security.

EXTENDED ABSTRACT

The factorization problem is one of the biggest un-
solved problems in computer science: a classical com-
puter, using the best factoring algorithms known at
present [1], requires an exponentially large number of
steps to find the primes factors of an l-digit integer N .
However, following the principles of quantum mechanics,
a computer will obtain the factors of N = xy in poly-
nomial time using Shor’s algortithm [3], a fact that will
jeopardize the security of the widely used cryptography
systems in conventional communication networks, which
relies on the classical intractability of this problem [2].
The exponential speed up of quantum algorithms is due
to the interference of probability amplitudes for the pre-
pared states during unitary evolution. Nonetheless, the
construction of a fully programmable quantum computer
running Shor’s algorithm is still a significant experimen-
tal challenge because it requires coherent control over
many qubits. The alternative shown here is to build the
solutions of the problem in the Hilbert space of a quan-
tum simulator performing factorization instead of going
through the route of a gate-based, fully programmable,
quantum computer. The key idea is to translate factor-
ing arithmetics into the physics of a device whose super-
position of states mimics the problem: i.e., a factoring
(analog)computer.

Having this in mind, we have recently proposed an
equivalent formulation of the factorization problem where
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the issue of finding the factor x is replaced by that of
reaching the value of a new function E, depending on x
[4]. The new formulation is adequate to finding the prob-
ability distribution of E(x) within a finite, well defined,
ensemble of pairs of prime numbers which is univocally
determined for any N . Since every possible factor of N
belongs to this set, we called it the factorization ensem-
ble. Additionally, owing to the statistical properties of
E(x) in this set (see [4] and [5]), the histogram of the
computed eigenvalues infers a measure of the quantum
probability for a given x to be a factor of N .

The new formulation is thus translated into the physics
of a system with bounded trajectories that, using semi-
classical quantization, could be interpreted as the classi-
cal counterpart of a quantum factoring simulator when E
is identified with the energy. This approach will be cor-
rect for very large N which, indeed, is the more relevant
and practical case.

In this work we also propose a physical realization for
the physical state of the quantum simulator which, as a
matter of fact, is achievable with the current technology:
A Cooper pair in a Penning Trap. The measurement of
only o(log

√
N)3 magnetron frequencies will provide the

location of the more likely factors x = o(
√
N) (see also

[5] for details on how the simulator operates).
Let us then define the factorization ensemble F(j) as

the set of all primes xk and yk such that when multiplied
obtain numbers Nk, in a vicinity of N , with the property
π(
√
Nk) = π(

√
N) = j. Now, for each xk and yk such

that Nk = xkyk in the ensemble, a bijection with xk is
defined with the function

Ek = π(xk)π(yk)/j2. (1)

From these definitions, the set (Ek, Nk) can be calcu-
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lated and depicted, e.g., in Fig. 1. As a matter of fact,
it shows the typical band structure of the energy spec-
trum of a quantum device. On the other hand, this kind
of behavior for an arithmetic function of the primes in
the ensemble can not be deduced from its definition in
number theory.

FIG. 1. A plot of the pairs of values (Ek, Nk) in F(10000).
The point, e.g., N = 10969262131 = 47297· 231923, E =
1.00441815 is represented (in red).

Now define the canonical variables q = (π(x)+π(y))/2j
and p = (π(y) − π(x))/2j, for x < y. Then Eq. 1 trans-
forms into the function

E(p, q) = −p2 + q2. (2)

For x, y ∈ F(j) it corresponds to the energy of a bounded
hamiltonian. Given that the possible energies belong to a
finite set, we are allowed to build a normalizable quantum
amplitude Ψ(q) satisfying the Schödinger equation if we
assume the quantum conditions [p, q] = i~

Ψ
′′

+ q2Ψ = EΨ. (3)

The solutions are stationary waves. Moreover, self-
consistency with number theory can be obtained if and
only if the cardinal of the factorization ensemble coin-
cides with the dimension of the Hilbert space.

Results. In [4], for large quantum numbers, we ob-
tained the eigenvalues {Ek} leading, as a corollary, to
calculate an asymptotic approximation for the prime
counting function πQ(x) that, although explicitly de-
pends about the number N , it actually provides the same
results for all the numbers used so far for computation, a
fact that must be related to the universality of the primes
as possible factors of a given number and that is here ob-
tained purely from quantum mechanics. The exactitude
of the quantum derived prime counting function is tanta-
mount to the approximation calculated by Riemann R(x)
as seen in Fig. 2.

Moreover we have also obtained the solution of the
quantum conditions of the simulator [5]

Ek(G) ' 1 + 1/ log qG ·
2π

km
k + o(k/km)2, (4)

FIG. 2. The functions ∆Q = π(x) − πQ(x) calculated here
(blue) and ∆R = π(x) − R(x) (dashed orange) for e.g., x ∈
F(3155).

where qG is a zero of the wave function of the simula-
tor with the boundary condition Ψ(1) = 0, (which corre-

sponds to primes x = o(
√
N)). Here, km ∼ 3

2π(log
√
N)3,

must be the number of stationary states of the simula-
tor which only scales polynomially with the number of
digits of N . Each of the zeroes of Ψ(q) define a gauge
related to the actual size of the device and, given its ar-
bitrariness, a statistical average can be determined. The
results are summarized in Figs. 3 (quantum theoretical)
and 4 (actual number theoretical). The probability for
a prime x(E), to be a factor or N is higher in the red
area and becomes zero in the blue regions. There exists
a pretty reasonable concordance between both graphics.
Recall that both plots are exactly normalized because we
represented (log

√
N)3 points in both graphics.

FIG. 3. Density plot for the distribution of values (Ek, xk) cal-
culated quantum mechanically for the simulator of F(10000).

We finally introduced in [5] a physical realization of the
simulator, with the same eigenvalues than that in Eq. 4,
consisting in preparing a Bell state for two electrons in
a Penning trap. The physical parameters or the trap de-
pend on the number N we are intended to factorize. The
histogram of the measured energies corresponding to the
magnetron motion provides a measure of the probability
of a given prime to be a factor of N . When the mea-
sured arithmetic function E is fed into a classical sieve
we should obtain an exponential speed up because, by
construction, the expected linear jumps in E(x) lead to
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FIG. 4. Actual density plot for the distribution of values
(Ek, xk) for the primes in F(10000).

exponential ones in x. Our results should be thus similar

to the expected ones using Shor’s algorithm but with-
out actually requiring a gate-based quantum computer.
Recall that noise can strongly affect the exactitude of
magnetron frequencies measurements in a Penning Trap
[6].

For electron traps with radius %m ∼ 3 mm [6], numbers
up to N ≤ 1020 can be factorized with the quantum sim-
ulator. While these are still far from RSA-sized numbers,
they are many orders of magnitude larger than what has
been demonstrated up to now.
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