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We consider the problem of communication over a quantum wiretap channel with one sender (Alice)
and two receivers Bob (legitimate receiver) and Eve (eavesdropper). They have access to a quantum chan-
nel whose characteristics is given by the super operator NA75BF_ The channel takes input the register A
(supplied by Alice) and produces a quantum state p?¥ where the register B is Bob’s share of the channel
output and E is Eve’s share of the channel output.

To send a message m € [1 : 2] Alice first encodes her message into a suitable form to mitigate the
effect of channel and also to keep it secure from Eve. One widely used security measure is the L; distance
(trace distance) § := H pME _ pM @) pF H where pMF represents the joint state between the message register
and the channel output at Eve’s end. The states p, p” are the appropriate marginals of p*¥. The goal is
to obtain bounds on the best possible value of R such that Alice may communicate with high reliability to
Bob, and high security against Eve.

Devetak in [2] and Cai-Winter-Yeung in [3]] first studied this problem in the limit of many independent
channel uses of the channel V4B (asymptotic iid setting) where in they showed the following:

Fact 1. The private classical capacity of a quantum channel N*BE in the asymptotic iid setting is the
following: limy,_, +P(N®*), where P(N') is defined as

P(N) = Sup (I[V;Bly = I[V; Els)

where the supremum is taken over all (auxiliary) random variables V' and functions F' : v — va, pf
being states in the input Hilbert space A of the channel. Above, all the information theoretic quantities are
calculated with respect to the following state:

VBE =3 pr(o)l)olY @ NATEE ),
veY

Our Result: We consider the above problem in the quantum one-shot setting. We need the following
definitions to discuss our results.
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Definition 1. (Quantum hypothesis testing divergence [4]) Let pV'P = > py (v)[v)(v]V @ p5 be a
classical quantum state. For £ € [0,1) the hypothesis testing divergence between the systems V and B is
defined as follows:

I5[V;B] := sup —logTr [T (p¥ ® p”)].
0=r=I
Tr[TpVB]>1-¢

Definition 2. (Quantum smooth max Rényi divergence) Let pV' ¥ := %" _\, pv (v)|v)(v|Y @ pE be a classical
quantum state. For € € [0, 1) the smooth max Rényi divergence between the systems V and E is defined as
follows:

IV E]: 1nf{ va {pv>27 E}pv]_ }’
veV
where p¥ = Try [pVE ] and { pE 27 pF } is the projector onto the positive Eigen space of the operator
E _ oy, E
Py —27p".

Theorem 1. (Achievability) Let NA7BE be a quantum wiretap channel. Let V be a random variable taking
valuesinV and F : V — S(H a). Consider the state

va ‘V ®NA%BE (pf) .

vey

Foreverye € (0,1) and § € (0,2) there exists a code with rate R, error probability at most € and security
at most § for the quantum wiretap channel NA7BE jf

R< 5}’1}1{)} (ISI [V; B] — max {O,Igo[V; E]}) + log (") + log (59) — O (loglog(dim(HEg)))

where 18¢' < € and § is such that 144\/5 < 4. The information theoretic quantities mentioned above are
calculated with respect to the state given above.

Theorem 2. (Converse) For a quantum wiretap channel N“A7BE,

R< sup (I§[V;B]~ 15, [ViE]) + 15,
(V,F}

where V' is a random variable over a setV, F' : V — S(H a) amap fromV to S(H 4) and all the information
theoretic quantities are calculated with respect to the following state:

@VBE Zp ‘V ®NA—>BE (pUA) )

veY

Techniques: Our achievability proof follows along the line of the proof in [5]. We generate an array of
codewords, with iid entries according to py,. We then partition this array into bands of an appropriate size
and uniquely assign each of these bands to a message. To send a message m € [2F], Alice chooses a
codeword v uniformly from the band corresponding to m; applies the map F' to v and then transmits the
resulting state pf over the channel. Bob on receiving his share of the channel output tries to determine the
codeword v using standard one-shot decoding techniques for a point to point quantum channel. He succeeds
with high probability for the given codebook size. It only remains to show that the message m is secret from



Eve. The random choice of v from the band corresponding to m should make Eve’s share of the channel
output independent of m. This is the main technical hurdle that must be overcome in order to prove the
correctness of a code for a wiretap channel. In the asymptotic iid setting, this hurdle is overcome by proving
a quantum covering lemma [5, Lemma 16.2.1] based on an operator Chernoff bound of Ahlswede-Winter
[6] for Hermitian matrices . Unfortunately, a straightforward translation of this technique to one-shot setting
fails. In this work, we overcome these difficulties and manage to prove for the first time a one-shot quantum
covering lemma mentioned below.

Theorem 3. (One-shot quantum covering lemma)

Let X be a random variable taking values in the set X. For each x € X, let p, be a quantum state in
the space H. Define p = Ex[px]. Let ¢ > 0. Suppose s = (X[1],X][2],...,X[M]) is a sequence of
independent random samples drawn according to the distribution of X, and let p = E,, ¢y [p X[m]]' Then,

107169 M>

Pr{[|p — pll > 22V} < 30(dim #)® exp (—(1 2o (@) 2
0g, (dim

On the way, we also prove a novel operator Chernoff bound for non-square matrices.

Proposition 1. (Chernoff bound for non-square matrices)

Let di > ds. Let X be a random variable taking values in a set X. For each x € X, let A, € Chxdz po q
matrix. Let ;1 > 0 and , 3 > 1 be such that ||Az| < pand ||Az||co < gfor allz € X. Let A = Ex [AX]
be the average of the matrices Ay. Suppose s = (X[1], X[2],...,X[M]) is a sequence of random samples
drawn according to the distribution of X, and A = Epem)[Ax[m)]- Then, for 0 < e < %,

- —e2 M
_ < >1_
f;r{”A Al < 5} > 1 — 4d; exp (32 ST 25+u> .

The proof for the converse (Theorem [2) essentially follows along the line of the proof given in [7]; the
translation to the one-shot quantum setting is straightforward.

Related work: In [8] Renes and Renner derive one-shot achievability and converse bounds for the quan-
tum wiretap channel in terms of conditional min and max Rényi entropies. They also show that their result
asymptotically yields the results of [2] and [3]]. However, the result of Renes and Renner [8]] does not seem
to yield the asymptotic characterisation of the wiretap channel in the information spectrum (asymptotic
non-iid) setting. Such a result is known however for the classical case [7]. We remark that our one-shot
bounds allow us to characterise the capacity of the wiretap channel in the information spectrum (asymptotic
non-iid) setting; our characterisation turns out to be nothing but the quantum analogue of the result in [7]].
This characterisation naturally recovers the results of [2] and [3] in the asymptotic iid setting.

A recent paper by Wilde [9]] studies the one-shot quantum wiretap channel, and obtains a very similar
result using techniques called convex-split and position based decoding introduced originally in [10, [11]].
The technique of convex-split is simpler than the one we introduce in this work. However, the one-shot cov-
ering lemma which we introduce in our work has the advantage that it gives an exponential Chernoff style
concentration result whereas convex split does not guarantee anything better than Markov style concentra-
tion. In the setting where there is one Bob but ¢ Eves, our techniques allow us to get the same security §

with a loss of log log(¢/9) bits of message. Convex split would lose as much as I, o t[V; E)] bits of message
which is much larger.
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